A combination of seismic refraction and ambient noise methods to detect landslide-prone materials

Main Article Content

Martín Cárdenas-Soto
Jesús Sánchez-González
José Antonio Martínez-González
David Escobedo-Zenil
Gerardo Cifuentes-Nava
Thalía Alfonsina Reyes-Pimentel

Abstract

A portion of the west of Mexico City is densely populated in an abrupt topography, whose volcano-sedimentary materials increase the likelihood of landslides. We exploited the geometry of a quadrangular geophones array to apply Seismic Refraction Tomography (SRT) and Ambient Noise Tomography (ANT) methods and explore the extent of landslide-prone materials. The results show low-velocity areas (Vs < 100 m/s, being Vs group velocities) associated with materials that have lost their resistance due to the increase in pore pressure and the places where eventually, more landslides will occur (120 < Vs < 200 m/s) if mitigation work is not carried out. The most stable zones correspond to materials with velocity values greater than 250 m/s that overlap a bedrock at an average depth of 8 m. Thus, when it is not advisable to perform active source experiments, ANT can provide practical results to determine the extension of the sliding materials.

Article Details

How to Cite
Cárdenas-Soto, M., Sánchez-González, J., Martínez-González, J. A., Escobedo-Zenil, D., Cifuentes-Nava, G., & Reyes-Pimentel, T. A. (2024). A combination of seismic refraction and ambient noise methods to detect landslide-prone materials. Geofisica Internacional, 63(3), 949–958. https://doi.org/10.22201/igeof.2954436xe.2024.63.3.1585
Section
Article
Author Biography

Martín Cárdenas-Soto, Universidad Nacional Autónoma de México, Facultad de Ingeniería, Departamento de Geofísica, 04510 Coyoacán, CDMX, México

Formación Académica:  Posgrado en Ciencias de la Tierra, UNAM. Doctorado en  Sismología y Física del Interior de la Tierra (2000)

Labor docente: Facultad de Ingeniería, UNAM. Cursos: Prospección Sismológica, Fuente Sísmica, Sismología de Movimientos Fuertes, Mecánica de Medio Continuo, Física de las ondas, Introducción al Diseño de Filtros Digitales. (2001 a la fecha).

Artículos en revistas indexadas: https://www.researchgate.net/profile/Martin-Cardenas-Soto

Labores Administrativas: Coordinador y Jefe del Departamento de Ingeniería Geofísica (2001 a 2011). Presidente de Subcomité Académico del Campo de Conocimiento (SACC) del Posgrado en Exploración y Explotación de Recursos Naturales del Subsuelo del Posgrado en Ingeniería, UNAM (2005 a 2012).

Tutor de Maestría y Doctorado en los Posgrados de Ingeniería (Exploración y Explotación de Recursos Naturales del Subsuelo) y Ciencias de la Tierra (Exploración y Sismología), 2004 a la fecha.

Asociaciones

  • Socio Sociedad Mexicana de Ingeniería Sísmica, A.C. 2010-2015
  • Society of Exploration Geophysicists, 2014-2023
  • Environmental and Engineering Geophysical Society, 2019- 2022
  • Seismological Society of America Membresía Anual 2018-2023
  • Unión Geofísica Mexicana, A.C. Membresía Anual 2021, Socio desde 1991
  • Socio Fundación UNAM Noviembre 2015 a la fecha
  • American Geophysics Union 2020 a 2021

Distinciones

  • Investigador Nivel I por el Sistema Nacional de Investigadores, CONACYT, 01 enero 2021 a 31 diciembre 2025.

References

Advanced Geosciences, Inc. (2014). Instruction manual for EarthImager 2D, version 1.9.0, Resistivity and IP inversion software: Advanced Geosciences, Inc.,134 p., accessed at http://www.agiusa.com/

Alimohammadlou, Y., Najafi, A., & Yalcin, A. (2013). Landslide process and impacts: A proposed classification method. Catena, 104, 219-232. doi: https://doi.org/10.1016/j.catena.2012.11.013 DOI: https://doi.org/10.1016/j.catena.2012.11.013

Arce, J. L., Paul, W. L., Luis Macías, J., Morales-Casique, E., García-Palomo, A., Jiménez-Domínguez, F. J., Benowitz, J., & Vásquez-Serrano, A. (2019). Geology and Stratigraphy of the Mexico Basin (Mexico City) Central Trans-Mexican Volcanic Belt. Journal of Maps 15(2), 320–32. doi: https://doi.org/10.1080/17445647.2019.1593251 DOI: https://doi.org/10.1080/17445647.2019.1593251

Bakulin, A., & Calvert, R. (2006). The virtual source method: Theory and case study. Geophysics, 71(4), SI139-SI150. doi: https://doi.org/10.1190/1.2216190 DOI: https://doi.org/10.1190/1.2216190

Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophysical Journal International 169(3), 1239–60. doi: https://doi.org/10.1111/j.1365-246x.2007.03374.x DOI: https://doi.org/10.1111/j.1365-246X.2007.03374.x

Breton, M. L., Bontemps, N., Guillemot, A., Baillet, L., & Larose, E. (2021). Landslide Monitoring Using Seismic Ambient Noise Correlation: Challenges and Applications. Earth-Science Reviews 216 (May): 103518. doi: https://doi.org/10.1016/j.earscirev.2021.103518 DOI: https://doi.org/10.1016/j.earscirev.2021.103518

Campillo, M., & Paul, A. (2003). Long-Range Correlations in the Diffuse Seismic Coda. Science 299 (5606), 547–49. doi: https://doi.org/10.1126/science.1078551 DOI: https://doi.org/10.1126/science.1078551

Cárdenas-Soto, M., Ramos-Saldaña, H., & Vidal-García, M. C. (2016). Interferometría de ruido sísmico para la caracterización de la estructura de velocidad 3D de un talud en la 3ª Sección del Bosque de Chapultepec, Ciudad de México. Boletín de la Sociedad Geológica Mexicana, 68(2), 173-186. doi: https://doi.org/10.18268/bsgm2016v68n2a1 DOI: https://doi.org/10.18268/BSGM2016v68n2a1

Cárdenas-Soto, M., Piña-Flores, J., Escobedo-Zenil, D., Sánchez-González, J., & Martínez-González, J. A. (2021a). Ambient seismic noise tomography to build up a 3D shear-wave velocity model. Ingeniería, investigación y tecnología, 22(2), 1-9. doi: https://doi.org/10.22201/fi.25940732e.2021.22.2.009 DOI: https://doi.org/10.22201/fi.25940732e.2021.22.2.009

Cárdenas-Soto, M., Piña-Flores, J., Escobedo-Zenil, D., Vidal-Garcia, M. C., Natarajan, T., Hussain, Y., and Sánchez-Sesma F. J. (2021b). Seismic Ambient Noise Tomography to Retrieve near-Surface Properties in Soils with Significant 3D Lateral Heterogeneity: The Case of Quinta Colorada Building in Chapultepec Mexico. Natural Hazards 108(1), 129–45. doi: https://doi.org/10.1007/s11069-021-04735-4 DOI: https://doi.org/10.1007/s11069-021-04735-4

Cárdenas-Soto, M., Gámez Lindoro, J. A., Peña Gaspar, V., Aguirre Díaz, J. P., & García Serrano, A. (2022). A Pseudo 3D Seismic Refraction Tomography for Exploring Archaeological Structures. Ingeniería Investigación y Tecnología 23(1), 1–9. doi: https://doi.org/10.22201/fi.25940732e.2022.23.1.003 DOI: https://doi.org/10.22201/fi.25940732e.2022.23.1.003

Chávez-García, F. J., Natarajan, T., Cárdenas-Soto, M., & Rajendran, K. (2021). Landslide characterization using active and passive seismic imaging techniques: a case study from Kerala, India. Natural Hazards, 105, 1623-1642. doi: https://doi.org/10.1007/s11069-020-04369-y DOI: https://doi.org/10.1007/s11069-020-04369-y

Del Gaudio, V., Wasowski, J., & Muscillo, S. (2013). New developments in ambient noise analysis to characterise the seismic response of landslide-prone slopes. Natural hazards and earth system sciences, 13(8), 2075-2087. doi: https://doi.org/10.5194/nhess-13-2075-2013 DOI: https://doi.org/10.5194/nhess-13-2075-2013

Everett, Mark E. (2013). Near-Surface Applied Geophysics. Cambridge University Press. doi: https://doi.org/10.1017/CBO9781139088435 DOI: https://doi.org/10.1017/CBO9781139088435

Gabàs, A., Macau, A., Benjumea, B., Bellmunt, F., Figueras, S., & Vilà, M. (2014). Combination of geophysical methods to support urban geological mapping. Surveys in Geophysics, 35, 983-1002. doi: https://doi.org/10.1007/s10712-013-9248-9 DOI: https://doi.org/10.1007/s10712-013-9248-9

Giroux, B., & Larouche, B. (2013). Task-parallel implementation of 3D shortest path raytracing for geophysical applications. Computers & geosciences, 54, 130-141. doi: https://doi.org/10.1016/j.cageo.2012.12.005 DOI: https://doi.org/10.1016/j.cageo.2012.12.005

Guedes, V. J. C. B., Maciel, S. T. R., & Rocha, M. P. (2022). Refrapy: A Python program for seismic refraction data analysis. Computers & Geosciences, 159, 105020. doi: https://doi.org/10.1016/j.cageo.2021.105020 DOI: https://doi.org/10.1016/j.cageo.2021.105020

Günther, T., Rücker, C., & Spitzer, K. (2006). Three-dimensional modelling and inversion of DC resistivity data incorporating topography—II. Inversion. Geophysical Journal International, 166(2), 506-517. doi: https://doi.org/10.1111/j.1365-246X.2006.03011.x DOI: https://doi.org/10.1111/j.1365-246X.2006.03011.x

Harba, P., Pilecki, Z., & Krawiec, K. (2019). Comparison of MASW and seismic interferometry with use of ambient noise for estimation of S-wave velocity field in landslide subsurface. Acta Geophysica, 67(6), 1875-1883. doi: https://doi.org/10.1007/s11600-019-00344-9 DOI: https://doi.org/10.1007/s11600-019-00344-9

Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters, 84(6), 1081-1088. doi: https://doi.org/10.1785/0220110096 DOI: https://doi.org/10.1785/0220110096

Jongmans, D., & Garambois, S. (2007). Geophysical investigation of landslides: a review. Bulletin de la Société Géologique de France, 178(2), 101-112. doi: https://doi.org/10.2113/gssgfbull.178.2.101 DOI: https://doi.org/10.2113/gssgfbull.178.2.101

Larose, E., Carrière, S., Voisin, C., Bottelin, P., Baillet, L., Guéguen, P., & Massey, C. (2015). Environmental seismology: What can we learn on earth surface processes with ambient noise? Journal of Applied Geophysics, 116, 62-74. doi: https://doi.org/10.1016/j.jappgeo.2015.02.001 DOI: https://doi.org/10.1016/j.jappgeo.2015.02.001

Loke, M. H. (2004). Tutorial: 2-D and 3-D electrical imaging surveys. DOI: https://doi.org/10.1071/ASEG2004ab091

Mainsant, G., Larose, E., Brönnimann, C., Jongmans, D., Michoud, C., & Jaboyedoff, M. (2012). Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. Journal of Geophysical Research: Earth Surface, 117(F1). doi: https://doi.org/10.1029/2011jf002159 DOI: https://doi.org/10.1029/2011JF002159

Martínez, J., & Qi, L. (1995). Inexact Newton methods for solving nonsmooth equations. Journal of Computational and Applied Mathematics, 60(1-2), 127-145. doi: https://doi.org/10.1016/0377-0427(94)00088-I DOI: https://doi.org/10.1016/0377-0427(94)00088-I

Moser, T. J. (1991). Shortest path calculation of seismic rays. Geophysics, 56(1), 59-67. doi: https://doi.org/10.1190/1.1442958 DOI: https://doi.org/10.1190/1.1442958

Nakata, N., Gualtieri, L., & Fichtner, A. (Eds.). (2019). Seismic ambient noise. Cambridge University Press. doi: https://doi.org/10.1017/9781108264808 DOI: https://doi.org/10.1017/9781108264808

Perrone, A., Lapenna, V., & Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews, 135, 65-82. doi: https://doi.org/10.1016/j.earscirev.2014.04.002 DOI: https://doi.org/10.1016/j.earscirev.2014.04.002

Pilz, M., Parolai, S., Bindi, D., Saponaro, A., & Abdybachaev, U. (2014). Combining seismic noise techniques for landslide characterization. Pure and Applied Geophysics, 171, 1729-1745. doi: https://doi.org/10.1007/s00024-013-0733-3 DOI: https://doi.org/10.1007/s00024-013-0733-3

Renalier, F., Jongmans, D., Campillo, M., & Bard, P. Y. (2010). Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation. Journal of Geophysical Research: Earth Surface, 115(F3). doi: https://doi.org/10.1029/2009jf001538 DOI: https://doi.org/10.1029/2009JF001538

Ritzwoller, M. H. (2009). Ambient noise seismic imaging. Recent Development in World Seismology, 9(31), 315-328. doi: https://doi.org/10.1036/1097-8542.YB090130 DOI: https://doi.org/10.1036/1097-8542.YB090130

Romero‐Ruiz, A., Linde, N., Keller, T., & Or, D. (2018). A review of geophysical methods for soil structure characterization. Reviews of Geophysics, 56(4), 672-697. doi: https://doi.org/10.1029/2018rg000611 DOI: https://doi.org/10.1029/2018RG000611

Rücker, C., Günther, T., & Wagner, F. M. (2017). pyGIMLi: An open-source library for modelling and inversion in geophysics. Computers & Geosciences, 109, 106-123. doi: https://doi.org/10.1016/j.cageo.2017.07.011 DOI: https://doi.org/10.1016/j.cageo.2017.07.011

Schuster, G. T. (2014). Seismic interferometry. In Encyclopedia of exploration geophysics (pp. Q1-1). Society of Exploration Geophysicists. doi: https://doi.org/10.1190/1.9781560803027 DOI: https://doi.org/10.1190/1.9781560803027.entry5

Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7). doi: https://doi.org/10.1029/2004gl019491 DOI: https://doi.org/10.1029/2004GL019491

Stefani, J. P. (1995). Turning-ray tomography. Geophysics, 60(6), 1917-1929. doi: https://doi.org/10.1190/1.1443923 DOI: https://doi.org/10.1190/1.1443923

Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics Cambridge University Press Cambridge. United Kingdom. doi: https://doi.org/10.1017/cbo9781139167932 DOI: https://doi.org/10.1017/CBO9781139167932

Tsai, V. C. (2011). Understanding the amplitudes of noise correlation measurements. Journal of Geophysical Research: Solid Earth, 116(B9). doi: https://doi.org/10.1029/2011jb008483 DOI: https://doi.org/10.1029/2011JB008483

Uhlemann, S., Hagedorn, S., Dashwood, B., Maurer, H., Gunn, D., Dijkstra, T., & Chambers, J. (2016). Landslide characterization using P-and S-wave seismic refraction tomography—The importance of elastic moduli. Journal of Applied Geophysics, 134, 64-76. doi: https://doi.org/10.1016/j.jappgeo.2016.08.014 DOI: https://doi.org/10.1016/j.jappgeo.2016.08.014

Varnes, D. J. (1958). Landslide types and processes: Landslides and Engineering Practice by the Committee on Landslide Investigations: in Eckel. Highway Research Board Special Report, 29.

Zainal, M., Munir, B., Marwan, M., Yanis, M., & Muhni, A. (2021). Characterization of Landslide geometry using Seismic Refraction Tomography in the GayoLues, Indonesia. Journal of Physics and Its Applications, 3(2), 148-154. doi: https://doi.org/10.14710/jpa.v3i2.10601 DOI: https://doi.org/10.14710/jpa.v3i2.10601

Most read articles by the same author(s)