Seiches in a butterfly-shaped basin
Main Article Content
Abstract
Long barotropic seiches are investigated in a basin of constant depth bounded by curves of an eliptical-hyperbolic coordinate system. Both plnnetnry and gravitational seiches are evalunted numerically by an iteration procedure. It is found that the frequencies of the gravitational seiches decrease with decreasing width of the narrow waist of tlte basin, in acordance with tlte theory of the Helmholz resonator, and the strongest currents are found in the waist of the basin. For planetary seiches, tite frequencies generally increase with decreasing width of the waist, tho not dramatically, and the associa·ted currents are weakest in the narrow waist.
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- Geofísica Internacional
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
NEUMANN, G. 1944a. Die lmpedanz mechanischer Schwingungssysteme und ihre Anwendung auf die Theorie des Seiches. Ann Hyder. Marit. Meteorol., 72 (3) : 65.
----. 1944b. Eine Methode zur Berechnung der Eigenperioden zusammengesetezter (gekoppelter) Seebeckensysteme. Ann. Hyder. Marit. Meteorol., 72 (7) : 193.
HOUGH, S. 1897. On the application of harmonic analysis to the dynamical theory of the tides. Phii. Trans. A, CLXXXIX (201) : y and CXCI (139).
LAMB, H. 1945. Hydrodynamics. New York., (Dover Publications). 739 pp.
LONGUET-HIGGINS, M. S. 1964. Planetary waves on a rotating sphere. Proc. Roy. Soc. A279 : 446-473. DOI: https://doi.org/10.1098/rspa.1964.0116
DERWIDUÉ, L. 1955. Une méthode mécaniquc de calcul des vecteurs d'une matrice quelconque. Bull Soc. Roy. Sci. (Liège), xxxxx, 24, (5) : 150-171 (R. Zh. M., 1956, 9115).
FADDEEV, D. K. y V. N. FADDEEVA. 1963. Computational methods of linear algebra. San Francisco and London. (W. H. Freeman and Co.), 621 pp.