Seiches in a butterfly-shaped basin

Main Article Content

Gordon W. Groves

Abstract

Long barotropic seiches are investigated in a basin of constant depth bounded by curves of an eliptical-hyperbolic coordinate system. Both plnnetnry and gravitational seiches are evalunted numerically by an iteration procedure. It is found that the frequencies of the gravitational seiches decrease with decreasing width of the narrow waist of tlte basin, in acordance with tlte theory of the Helmholz resonator, and the strongest currents are found in the waist of the basin. For planetary seiches, tite frequencies generally increase with decreasing width of the waist, tho not dramatically, and the associa·ted currents are weakest in the narrow waist.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
20213
145

Indexed in

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

PFL

1 2 3 4 5
Not useful Very useful

Article Details

How to Cite
Groves, G. W. (1968). Seiches in a butterfly-shaped basin. Geofisica Internacional, 8(1), 3–14. https://doi.org/10.22201/igeof.2954436xe.1968.8.1.1649
Section
Article

References

NEUMANN, G. 1944a. Die lmpedanz mechanischer Schwingungssysteme und ihre Anwendung auf die Theorie des Seiches. Ann Hyder. Marit. Meteorol., 72 (3) : 65.

----. 1944b. Eine Methode zur Berechnung der Eigenperioden zusammengesetezter (gekoppelter) Seebeckensysteme. Ann. Hyder. Marit. Meteorol., 72 (7) : 193.

HOUGH, S. 1897. On the application of harmonic analysis to the dynamical theory of the tides. Phii. Trans. A, CLXXXIX (201) : y and CXCI (139).

LAMB, H. 1945. Hydrodynamics. New York., (Dover Publications). 739 pp.

LONGUET-HIGGINS, M. S. 1964. Planetary waves on a rotating sphere. Proc. Roy. Soc. A279 : 446-473. DOI: https://doi.org/10.1098/rspa.1964.0116

DERWIDUÉ, L. 1955. Une méthode mécaniquc de calcul des vecteurs d'une matrice quelconque. Bull Soc. Roy. Sci. (Liège), xxxxx, 24, (5) : 150-171 (R. Zh. M., 1956, 9115).

FADDEEV, D. K. y V. N. FADDEEVA. 1963. Computational methods of linear algebra. San Francisco and London. (W. H. Freeman and Co.), 621 pp.

Most read articles by the same author(s)