Model of mid-and low-latitude F region ionosphere and protonosphere
Main Article Content
Abstract
The coupled continuity and momentum equations of O+ and H+ ions in the F region and the protonosphere are solved for a mid-latitude station (Arecibo) and a low-latitude station (Jicamarca) to investigate the diurnal behavior of the peak electron density NmF2, the height of the peak HmF2, the O+ - H+ transition height Htr and the transition level ion density Ntr·The effects of the neutral wind on the NmF2, HmF2, Ntr and Htr curves above Arecibo are more important than and generally in the opposite direction of those of a sinusoidal electromagnetic drift. The electromagnetic drift plays a far-reaching role in shaping the ionospheric and protonospheric profiles at Jicamarca. An upward drift that peaks during the day produces a 'valley' in the NmF2 curve, while an upward drift that stays constant during most of the day produces a 'plateau'. The nighttime decay in NmF2 is due to the combined effects of a slow downward drift and chemical recombination. A nocturnal increase in NmF2 is due to a sufficiently large downward drift when the resultant 'squeezing' of the field tubes overcomes the O+ loss rate. The diurnal variations of HmF2 and Htr tend to follow that of the upward drift velocity pattern, with gradients somewhat smoothed. A downward reversal of the drift at sunset causes an enhancement in the post-sunset Ntr·Finally, the applicability of the model to the study of the total electron content measurements of the ATS-6 radio beacon experiments at Ootacamund is demonstrated. by comparing with the observed values, the probable drift velocities over Ootacamund are determined for October and December, 1975. The drift velocity patterns show broad similarities with those observed over Jicamarca.
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- Geofísica Internacional
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
ANDERSON, D. N., 1973. A theoretical study of the ionospheric F region equatorial anomaly. Planet. Space Sci. 21, pp. 409-422. DOI: https://doi.org/10.1016/0032-0633(73)90040-8
ANGERAMI, J. J. and J. O. THOMAS, 1964. Studies of planetary atmospheres. J. Geophys. Res. 69, pp. 4537-4550. DOI: https://doi.org/10.1029/JZ069i021p04537
BANKS, P. M., 1966. Collision frequencies and energy transfer - ions. Planet. Space Sci. 14, pp. 1105-1122. DOI: https://doi.org/10.1016/0032-0633(66)90025-0
BANKS, P. M. and G. KOCKARTS, 1973. Aeronomy. Academic Press, New York.
BATES, D. R. and A. DALGARNO, 1962. Atomic and Molecular Processes, Academic Press, New York.
BAXTER, R. G. and P. C. KENDALL, 1968. A theoretical technique for evaluating time-dependent effects of general electrodynamic drifts in the F2 layer of the ionosphere. Proc. Roy. Soc. A304, pp. 171-180. DOI: https://doi.org/10.1098/rspa.1968.0080
BOUWER, S. D., K. DAVIES, R. F. DONNELLEY, R. G. RASTOGI and M. R. DESHPANDE, 1979. ATS-6 radio beacon electron content measurements at Ootacamund, India. World Data Center A for Solar Terrestrial Physics, UAG Report.
BOUWER, S. D., K. DAVIES, R. F. DONNELLEY, R. G. RASTOGI and M. R. DESHPANDE, 1979. ATS-6 radio beacon electron content measurements at Ootacamund, India. World Data Center A for Solar Terrestrial Physics, UAG Report.
BRAMLEY, E. N. and M. PEART, 1965. Diffusion and electromagnetic drift in the equatorial F2 region. J. Atmos. Terr. Phys. 27, pp.1201-1211. DOI: https://doi.org/10.1016/0021-9169(65)90081-4
BRINTON, H. C. and H. G. MAYR, 1971. Temporal variations of thermospheric hydrogen derived from in situ measurements, J. Geophys. Res. 76, pp. 6198-6201. DOI: https://doi.org/10.1029/JA076i025p06198
CHAPMAN, S., 1931a. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth. Proc. Phys. Soc. (London) 43, pp. 26-45. DOI: https://doi.org/10.1088/0959-5309/43/1/305
CHAPMAN, S., 1931b. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth. II. Grazing incidence. Proc. Phys. Soc. (London) 43, pp. 483-501. DOI: https://doi.org/10.1088/0959-5309/43/5/302
DAVIES, K., R. B. FRITZ and T. B. GRAY, 1976. Measurements of the columnar electron content of the ionosphere and plasmasphere, J. Geophys. Res. 81, pp. 2825-2834. DOI: https://doi.org/10.1029/JA081i016p02825
EV ANS, J. V., 1967. Midlatitude F region densities and temperatures at sunspot minimum. Planet Space Sci 15, pp. 1387-1405. DOI: https://doi.org/10.1016/0032-0633(67)90112-2
HAGEN, J. B. and P. Y. S. HSU, 1974. The structure of the protonosphere above Arecibo. J. Geophys. Res. 79, pp. 4269-4275. DOI: https://doi.org/10.1029/JA079i028p04269
HANSON, W. B. and R. J. MOFFET, 1966. Ionization transport effects in the equatorial F region. J. Geophys. Res. 71, pp. 5559-5572. DOI: https://doi.org/10.1029/JZ071i023p05559
HANSON, W. B. and T. N. L. PATTERSON, 1964. The maintenance of the night-time F layer, Planet. Space Sci. 12, pp. 979-997. DOI: https://doi.org/10.1016/0032-0633(64)90112-6
JACCHIA, L. G., 1964. Static diffusion models of the upper atmosphere with empirical temperature profiles. Smithsonian Astrophys. Obs. Spec. Rept. 170. DOI: https://doi.org/10.5962/bhl.title.4246
JACCHIA, L. G., 1970. New static models of the thermosphere and exosphere with empirical temperature profiles. Smithsonian Astrophys. Obs. Spec. Rept. 313.
JACCHIA, L. G., 1971. Revised static models of the thermosphere and exosphere with empirical temperature profiles. Smithsonian Astrophys. Obs. Spec. Rept. 332.
JACCHIA, L. G., 1974. Variations in thermospheric composition: A model based on mass spectrometer and satellite drag data. J. Geophys. Res. 79, pp. 1923-1927. DOI: https://doi.org/10.1029/JA079i013p01923
KENDALL, P. C., 1962. Geomagnetic control of diffusion in the F2-region of the ionosphere. I. The form of the diffusion operator. J. Atmos. Terr. Phys. 24, pp.805-811. DOI: https://doi.org/10.1016/0021-9169(62)90201-5
LAASONEN, P., 1949. Uber eine methode zur lösung der wärmeleitungsgleichung. Acta Math. 81, pp. 309-317. DOI: https://doi.org/10.1007/BF02395025
MARTYN, D. F., 1947. Atmospheric tides in the ionosphere. 1. Solar tides in the F2 region, Proc. Roy. Soc. A189, pp. 241-260. DOI: https://doi.org/10.1098/rspa.1947.0037
MASSA, J., 1974. Theoretical and experimental studies of the ionization exchange between the ionosphere and the plasmasphere, Ph. D. Thesis, University of Michigan.
MAYNARD, N. C. and J. M. GREBOWSKY, 1977. The plasmapause revisited, J. Geophys. Res. 82, pp. 1591-1600. DOI: https://doi.org/10.1029/JA082i010p01591
MAYR, H. G., E.G. FONTHEIM, L. H. BRACE, H. C. BRINTON and H. A. TAYLOR, Jr., 1972. A theoretical model of the ionospheric dynamics with interhemispheric coupling, J. Atmos. Terr. Phys. 34, pp. 1659-1680. DOI: https://doi.org/10.1016/0021-9169(72)90027-X
MOFFETT, R. G. and J. A. MURPHY, 1973. Coupling between the F-region and protonosphere: Numerical solution of the time-dependent equations. Planet Space Sci. 21, pp. 43-52. DOI: https://doi.org/10.1016/0032-0633(73)90018-4
RASTOGI, R. G. and S. SANATANI, 1963. Longitudinal effects in the equatorial F2-region of the ionosphere. J. Atmos. Tell. Phys. 25, pp. 739-742. DOI: https://doi.org/10.1016/0021-9169(63)90068-0
RICHTMYER, R. D., 1957. Difference methods for initial-value problems. Interscience, New York.
SCHUNK, R. and J. C. G. WALKER, 1972. Oxygen and hydrogen ion densities above Millstone Hill. Planet. Space Sci. 20, pp. 581-589. DOI: https://doi.org/10.1016/0032-0633(72)90087-6
STERLING, D. L., W. B. HANSON, R. J. MOFFETT and R. G. BAXTER, 1969. Influence of electromagnetic drifts and neutral air winds on some features of the F2 region, Radio Science 4, pp. 1005-1023. DOI: https://doi.org/10.1029/RS004i011p01005
TITHERIDGE, J. E., 1976. Ion transition heights from topside electron density profiles. Planet. Space Sci 24, pp. 229-245. DOI: https://doi.org/10.1016/0032-0633(76)90020-9
WALKER, J. C. G., 1965. Analytic representation of upper atmosphere densities based on Jacchia's static diffusion models. J. Atmos. Sci. 22, pp. 462-463. DOI: https://doi.org/10.1175/1520-0469(1965)022<0462:AROUAD>2.0.CO;2