Seismic facies characterization using Rock Physics Templates and brittleness indices: Stybarrow field

Main Article Content

Daniel López-Aguirre
Miguel Ángel Domínguez-Cruz
José Aurelio España-Pinto
Oscar Cerapio Valdiviezo-Mijangos
Rubén Nicolás-López

Abstract

This paper proposes a method for identifying the lithological properties of the medium based on the joint analysis of the Lamé parameters, Young's Modulus, and Poisson's Ratio. Additionally, an analysis of brittleness was proposed to identify brittle/ductile intervals and areas of potential reservoirs. The petroelastic properties were analyzed at well and seismic scales using ternary rock physics templates. The ternary templates were built from a self-consistent micromechanical model. In addition, the analysis allows for preserving the conditions of the environment subsurface in the seismic and log information. A workflow for petroelastic lithology interpretation was coupled with a workflow of brittleness modeling.  The results correlate well with conventional qualitative methodologies applied in previous studies. A brittleness analysis methodology was developed and tested to identify reservoirs associated with the Lower Cretaceous in the Stybarrow field in Australia; the results highlight the high brittleness zones attenuated by hydrocarbons ( ). The proposed seismic-based methodology is an improvement to conventional analysis trends for identifying lithologies and prospective hydrocarbon zones.

Article Details

How to Cite
López-Aguirre, D., Domínguez-Cruz, M. Ángel, España-Pinto, J. A., Valdiviezo-Mijangos, O. C., & Nicolás-López, R. (2024). Seismic facies characterization using Rock Physics Templates and brittleness indices: Stybarrow field. Geofisica Internacional, 63(1), 677–696. https://doi.org/10.22201/igeof.2954436xe.2024.63.1.1716
Section
Article

References

Anatoly S. (1999). Mathematical models of elastic wave processes in seismology and seismic prospecting: forward and inverse problems. Simulation Practice and Theory, 7(2), 125-151. doi: https://doi.org/10.1016/S0928-4869(98)00025-1Get rights and content

Arévalo-López, H. S., (2017). Petro-Elastic Interpretation of Seismic Impedances. [Doctoral Thesis]. Stanford University.

Areválo-López, H. S. and Dvorkin, J. P., (2017). Simultaneous impedance inversion and interpretation for an offshore turbiditic reservoir. Interpretation, 5(3), SL9-SL23, doi: https://doi.org/10.1190/INT-2016-0192.1

Avseth, P., Mukerji, T., and Mavko, G. (2005). Quantitative Seismic Interpretation. Applying Rock Physics to Reduce Interpretation Risk. Cambridge University Press. doi: https://doi.org/10.1017/S0016756806233053

Bredesen, K., Lorentzen, M., Nielsen, L., and Mosegaard, K. (2021). Quantitative seismic interpretation of the Lower Cretaceous reservoirs in the Valdemar Field, Danish North Sea. Petroleum Geoscience, 27(4), 1-17. doi: https://doi.org/10.1144/petgeo2021-016

Byoung, Y.K. (2016). Prestack elastic generalized-screen migration for multicomponent data. Journal of Applied Geophysics, 126, 116–127, doi: https://doi.org/10.1016/j.jappgeo.2016.01.016

Chengbo, Y. (2016). Effects of porosity on seismic velocities, elastic moduli and Poisson’s ratios of solid materials and rocks. Journal of Rock Mechanics and Geotechnical Engineering, 8(1), 35-49. doi: https://doi.org/10.1016/j.jrmge.2015.07.004

Carcione, J., and Avseth, P. (2015). Rock-physics templates for clay-rich source rocks. Geophysics, 80(5), D481-D500. doi: https://doi.org/10.1190/geo2014-0510.1

Danaei, S., Silva-Neto, G.M., Schiozer, D.J., and Davolio A. (2020). Using the petro-elastic proxy model to integrate 4D seismic in ensemble-based data assimilation. Journal of Petroleum Science and Engineering, 194, 107457. doi: https://doi.org/10.1016/j.petrol.2020.107457

Ementon, N., Hill, R., Flynn, M., Motta, B., and Sinclair, S. (2004). Stybarrow Oil Field–From Seismic to Production, the Integrated Story so Far. [Paper presented]. SPE Asia Pacific Oil and Gas Conference and Exhibition. doi: https://doi.org/10.2118/88574-MS

Gavin, L. J. (2015). Stress-induced seismic azimuthal anisotropy offshore NW Australia. [Doctoral Thesis]. The University of Western Australia.

Goodway, B., Perez, M., Varsek, J., and Abaco, C. (2010). Seismic petrophysics and isotropic-anisotropic AVO methods for unconventional gas exploration. The Leading Edge, 29(12), 1500-1508. doi: https://doi.org/10.1190/1.3525367

Holt, R., and Westwood, B. (2016). Predicting mineralogy from elastic rock properties. CSEG Recorder, 41(2), 22-26. https://csegrecorder.com/articles/view/predicting-mineralogy-from-elastic-rock-properties

Lizcano-Hernández, E. G., Nicolás-López, R., Valdiviezo-Mijangos, O. C. and Meléndez-Martínez, J. (2018). Estimation of brittleness indices for pay zone determination in a shale-gas reservoir by using elastic properties obtained from micromechanics. Journal of Geophysics Engineering, 15(2), 307–314, doi: https://doi.org/10.1088/1742-2140/aa9a5e

López-Aguirre, D., García-Benitez, S. R., and Nicolás-López, R. (2020). Obtención de la velocidad de corte y parámetros elásticos-geomecánicos, utilizando redes neuronales. AIPM Petroleum Engineering Journal, 60(2), 119-138.

Mardani, R. A. (2020). Generating Synthetic Seismogram in Python, Online Short Course, EAGE.

Nicolás-Lopez, R., and Valdiviezo-Mijangos, O. C. (2016). Rock physics templates for integrated analysis of shales considering their mineralogy, organic matter and pore fluids. Journal of Petroleum Science and Engineering, 137, 33-41. doi: https://doi.org/10.1016/j.petrol.2015.11.009

Uhlemann, S., Hagedorn, S., Dashwood, B., Maurer, H., Gunn, D., Dijkstra, T., and Chambers, J. (2016). Landslide characterization using P- and S-wave seismic refraction tomography — The importance of elastic moduli. Journal of Applied Geophysics, 134, 64–76. doi: https://doi.org/10.1016/j.jappgeo.2016.08.014

Valdiviezo-Mijangos, O. C., and Nicolás-López, R. (2014). Dynamic characterization of shale systems by dispersion and attenuation of P- and S-waves considering their mineral composition and rock maturity. Journal of Petroleum Science and Engineering, 122, 420-427. doi: https://doi.org/10.1016/j.petrol.2014.07.041

Zhiheng, J. (2019). Seismic inversion for fluid bulk modulus based on elastic impedance. Journal of Applied Geophysics, 169, 74-84. doi: https://doi.org/10.1016/j.jappgeo.2019.06.013

Zoback, M. D. (2007). Reservoir Geomechanics. Cambridge University Press.