A Source and Ground Motion Study of the Veracruz Earthquakes of 29 October 2009 (Mw5.7) and 4 August 2021 (Mw4.8): Evidence of Strong Azimuthal Variation of Attenuation
Main Article Content
Abstract
We study two moderate earthquakes that occurred offshore the State of Veracruz, in the southwestern Gulf of Mexico, on 29 October 2009 (Mw 5.7) and 4 August 2021 (Mw 4.8). The former was located near the town of Alvarado and latter near the city of Veracruz. The events were well recorded by accelerographs and seismographs at local and regional distances. W-phase regional centroid moment tensor inversion reveals that they had reverse-faulting mechanism, similar to several other earthquakes in the southwestern Gulf of Mexico. Of the seven focal mechanisms now available along the southwestern margin, two are strike slip and the rest are of thrust type, suggesting a heterogeneous stress regime. We take advantage of local and regional recordings produced by these two earthquakes to study the characteristics of the ground motion. Source spectra computed at each station separately (without correcting for the site effect), assuming a reasonable geometrical spreading and Q = 141f 0.63, show remarkably high variability due to difference in path and local site effects. The geometric mean apparent source spectrum (source spectrum including site effects) of both earthquakes may be modeled by an ω2 -Brune source model with a stress drop, Δσ, of 40 MPa. These source spectra, along with the application of stochastic method, yield peak ground acceleration (PGA) and velocity (PGV) as a function of distance in general agreement with the observations. Of greater practical importance is the ground motion at sedimentary sites in the city of Veracruz and at the Laguna Verde Nuclear Power Plant (LVNPP) site, especially from a postulated Mw 6.5 earthquake which is a reasonable scenario event for the region. For the city of Veracruz and LVNPP we estimate site effect with respect to the ω2 -Brune source with Δσ of 2 MPa. There is some support for this Δσ. We apply both stochastic and empirical Green’s functions (EGF) techniques in the estimation of the ground motion. The recording of the 2021 earthquake is taken as the EGF, and Δσ of the EGF and the target event are assumed to be the same and equal to 2 MPa. The predicted PGA and PGV at sedimentary sites in the city of Veracruz and LVNPP above the hypocenter (depth = 20 km) from the postulated Mw 6.5 earthquake are 0.2 g and 10 cm/s and 0.18 g and 3 cm/s, respectively. These results are preliminary as they are based on several assumptions.
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- Geofísica Internacional
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Allmann, B. P., and P. M. Shearer (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research, 114, B01310. doi: https://doi.org/10.1029/2008JB005821
Andreani, L., Rangin, C., Martinez-Reyes, J., Le Roy, C., Aranda-Garcia, M., Le Pichon, X., Peterson-Rodriguez, R. (2008). The Neogene Veracruz Fault: evidences for left-lateral slip along the Southern Mexico Block. Bulletin de la Société Géologique de France, 179, 195-208. doi: https://doi.org/10.2113/gssgfbull.179.2.195
Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of radiated spectra. Bulletin of Seismological Society of America, 73(6A), 1865-1884. doi: https://doi.org/10.1785/BSSA07306A1865
Boore, D.M. (2003). Simulation of ground motion using the stochastic method. Pure and Applied Geophysics, 160, 635-676. doi: https://doi.org/10.1007/PL00012553
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997-5009. doi: https://doi.org/10.1029/jb075i026p04997
Canas, J. A. (1986). Estudio de factor inelástico Q de la coda de los terremotos correspondientes a las regiones central y oriental del eje volcánico de México. Geofísica Internacional, 25(4), 503-520. doi: https://doi.org/10.22201/igeof.00167169p.1986.25.4.775
Chael, E. P. (1987). Spectral scaling of earthquakes in the Miramichi region of New Brunswick. Bulletin of the Seismological Society of America, 77(2), 347-365. doi: https://doi.org/10.1785/bssa0770020347
Dewey, J.W., Suárez, G. (1991). Seismotectonics of middle America, En A. Slemmons, D.B., Engdahl, E.R., Zoback, M.D., and Blackwell, D.D. (Eds.) Neotectonicas of North America (pp. 309-321). Geological Society of America. doi: https://doi.org/10.1130/DNAG-CSMS-NEO.309
Dreger, D.S. (2003) TDMT_INV: time domain seismic moment tensor inversion. International Geophysics, 81(B), 1627. doi: https://doi.org/10.1016/S0074-6142(03)80290-5
Dreger, D. S., Helmberger, D. V. (1993). Determination of source parameters at regional distances with three-component sparse network data. Journal of Geophysical Research: Solid Earth, 98(B5), 8107-8125. doi: https://doi.org/10.1029/93jb00023
Duputel, Z., Rivera, L., Kanamori, H., Hayes, G. (2012). W-phase fast source inversion for moderate to large earthquakes (1990 - 2010). Geophysical Journal International, 189(2), 1125-1147. doi: https://doi.org/10.1111/j.1365-246X.2012.05419.x
Figueroa, J. (1964). El macrosismo de Jáltipan. 1. Sismologia. Ingeniería, July, 357-362.
Franco, S. I., Canet, C., Iglesias, A., Valdés-González, C. (2013). Seismic activity in the Gulf of Mexico. A preliminary analysis. Boletín de la Sociedad Geologíca Mexicana, 65(3), 447-455.
Frohlich, C. A. (1982). Seismicity of the central Gulf of Mexico. Geology, 10(2), 103-106. doi: https://doi.org/10.1130/0091-7613(1982)10<103:SOTCGO>2.0.CO;2
Fukuyama, E., Dreger, D. S. (2000). Performance test of an automated moment tensor determination system for the future “Tokai” earthquake. Earth, Planets and Space, 52(6), 383-392. doi: https://doi.org/10.1186/bf03352250
Hayes, G. P., Rivera, L., Kanamori, H. (2009). Source Inversion of the W-Phase: Real-time Implementation and Extension to Low Magnitudes. Seismological Research Letters, 80(5), 817-822. doi: https://doi.org/10.1785/gssrl.80.5.817
Herrmann, R. B. (1985). An extension of random vibration theory estimates of strong ground motion at large distances. Bulletin of the Seismological Society of America, 75(5), 1447-1453. doi: https://doi.org/10.1785/BSSA0750051447
Kanamori, H., Rivera, L. (2008). Source inversion of W phase: speeding up seismic tsunami warning. Geophysical Journal International, 175(1), 222-238. doi: https://doi.org/10.1111/j.1365-246x.2008.03887.x
Nuttli, O. W. (1983). Average seismic source-parameter relations for mid-plate earthquakes. Bulletin of the Seismological Society of America, 73(2), 519-535. doi: https://doi.org/10.1785/bssa0730020519
Ordaz, M., Arboleda, J., Singh, S.K. (1995). A scheme of random summation of an empirical Green´s function to estimate ground motions from future large earthquakes. Bulletin of the Seismological Society of America, 85(6), 1635-1647. doi: https://doi.org/10.1785/BSSA0850061635
Pérez-Campos, X., Espíndola, V. H., Pérez, J. et al. (2019). Servicio Sismológico Nacional, Mexico. Summary of the Bulletin of the International Seismological Centre, 53(II), 29-40. doi: https://doi.org/10.31905/sz7rybtm
Reséndiz, D. (1964). El macrosismo de Jáltipan. 2. Suelos. Ingeniería, July, 362-379.
Rosenblueth, E. (1964). El macrosismo de Jáltipan. Introducción. Ingeniería, July, 357.
Shapiro, N. M., Singh, S. K., Iglesias-Mendoza, A., Cruz-Atienza, V. M., Pacheco, J. F. (2000). Evidence of low Q below Popocatépetl Volcano, and its implication to seismic hazard in Mexico City. Geophysical Research Letters, 27(17), 2753-2756. doi: https://doi.org/10.1029/1999gl011232
Singh, S.K., Pacheco, J.F., Garcia, D., Iglesias, A. (2006). An estimate of shear-vave Q of the mantle wedge in Mexico. Bulletin of the Seismological Society of America, 96, 176–187, doi: https://doi.org/10.1785/0120050001
Singh, S. K., Iglesias, A., García, D., Pacheco, J. F., Ordaz, M. (2007). Q of Lg Waves in the Central Mexican Volcanic Belt. Bulletin of the Seismological Society of America, 97(4), 1259-1266. doi: https://doi.org/10.1785/0120060171
Singh, S.K., Pacheco, J. F., Pérez-Campos, X., Ordaz, M., Reinoso, E. (2015). The 6 September 1997 (Mw4.5) Coatzacoalcos-Minatitlan, Veracruz, Mexico earthquake: implications for tectonics and seismic hazard of the region. Geofísica International, 54(3), 289-298. doi: https://doi.org/10.1016/j.gi.2015.08.001
Singh, S.K., Arroyo, D., Pérez-Campos, X., Iglesias, A., Espíndola, V.H., Ramírez, L. (2017). Guadalajara, Mexico, earthquake sequence of December 2015 and May 2016: source, Q, and ground motions. Geofísica Internacional, 56(2), 173-186. doi: https://doi.org/10.22201/igeof.00167169p.2017.56.2.1764
Suárez, G., López, A. C. G. (2015). Seismicity in the southwestern Gulf of Mexico: evidence of active back arc deformation. Revista Mexicana de Ciencias Geológicas, 32(1), 77-83. http://www.redalyc.org/pdf/572/57237105007.pdf
Suárez, G. (2000). Reverse faulting in the Isthmus of Tehuantepec: Backarc deformation induced by the subduction of the Tehuantepec ridge, En A. Delgado, H., Aguirre, G., Stock, J., (Eds). Cenozoic Tectonics and Volcanism of Mexico (pp. 263‐268) Geological Society of. America. doi: https://doi.org/10.1130/0-8137-2334-5.263