A Source and Ground Motion Study of the Veracruz Earthquakes of 29 October 2009 (Mw5.7) and 4 August 2021 (Mw4.8): Evidence of Strong Azimuthal Variation of Attenuation

Main Article Content

Arturo Iglesias Mendoza
S.K. Singh
D. Arroyo
X. Pérez-Campos
V. H. Espíndola
A. Vargas
F. Córdoba-Montiel
Deni M. González-López

Abstract

We study two moderate earthquakes that occurred offshore the State of Veracruz, in the southwestern Gulf of Mexico, on 29 October 2009 (Mw 5.7) and 4 August 2021 (Mw 4.8). The former was located near the town of Alvarado and latter near the city of Veracruz. The events were well recorded by accelerographs and seismographs at local and regional distances. W-phase regional centroid moment tensor inversion reveals that they had reverse-faulting mechanism, similar to several other earthquakes in the southwestern Gulf of Mexico. Of the seven focal mechanisms now available along the southwestern margin, two are strike slip and the rest are of thrust type, suggesting a heterogeneous stress regime. We take advantage of local and regional recordings produced by these two earthquakes to study the characteristics of the ground motion. Source spectra computed at each station separately (without correcting for the site effect), assuming a reasonable geometrical spreading and Q = 141f 0.63, show remarkably high variability due to difference in path and local site effects. The geometric mean apparent source spectrum (source spectrum including site effects) of both earthquakes may be modeled by an ω2 -Brune source model with a stress drop, Δσ, of 40 MPa. These source spectra, along with the application of stochastic method, yield peak ground acceleration (PGA) and velocity (PGV) as a function of distance in general agreement with the observations. Of greater practical importance is the ground motion at sedimentary sites in the city of Veracruz and at the Laguna Verde Nuclear Power Plant (LVNPP) site, especially from a postulated Mw 6.5 earthquake which is a reasonable scenario event for the region. For the city of Veracruz and LVNPP we estimate site effect with respect to the ω2 -Brune source with Δσ of 2 MPa. There is some support for this Δσ. We apply both stochastic and empirical Green’s functions (EGF) techniques in the estimation of the ground motion. The recording of the 2021 earthquake is taken as the EGF, and Δσ of the EGF and the target event are assumed to be the same and equal to 2 MPa. The predicted PGA and PGV at sedimentary sites in the city of Veracruz and LVNPP above the hypocenter (depth = 20 km) from the postulated Mw 6.5 earthquake are 0.2 g and 10 cm/s and 0.18 g and 3 cm/s, respectively. These results are preliminary as they are based on several assumptions.

Article Details

How to Cite
Iglesias Mendoza, A., Singh, S. K., Arroyo, D., Pérez Campos, X., Espíndola Castro, V. H., Vargas, A. ., Córdoba-Montiel, F., & González-López, D. M. (2024). A Source and Ground Motion Study of the Veracruz Earthquakes of 29 October 2009 (Mw5.7) and 4 August 2021 (Mw4.8): Evidence of Strong Azimuthal Variation of Attenuation. Geofisica Internacional, 63(2), 763–781. https://doi.org/10.22201/igeof.2954436xe.2024.63.2.1726
Section
Article

References

Allmann, B. P., and P. M. Shearer (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research, 114, B01310. doi: https://doi.org/10.1029/2008JB005821

Andreani, L., Rangin, C., Martinez-Reyes, J., Le Roy, C., Aranda-Garcia, M., Le Pichon, X., Peterson-Rodriguez, R. (2008). The Neogene Veracruz Fault: evidences for left-lateral slip along the Southern Mexico Block. Bulletin de la Société Géologique de France, 179, 195-208. doi: https://doi.org/10.2113/gssgfbull.179.2.195

Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of radiated spectra. Bulletin of Seismological Society of America, 73(6A), 1865-1884. doi: https://doi.org/10.1785/BSSA07306A1865

Boore, D.M. (2003). Simulation of ground motion using the stochastic method. Pure and Applied Geophysics, 160, 635-676. doi: https://doi.org/10.1007/PL00012553

Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997-5009. doi: https://doi.org/10.1029/jb075i026p04997

Canas, J. A. (1986). Estudio de factor inelástico Q de la coda de los terremotos correspondientes a las regiones central y oriental del eje volcánico de México. Geofísica Internacional, 25(4), 503-520. doi: https://doi.org/10.22201/igeof.00167169p.1986.25.4.775

Chael, E. P. (1987). Spectral scaling of earthquakes in the Miramichi region of New Brunswick. Bulletin of the Seismological Society of America, 77(2), 347-365. doi: https://doi.org/10.1785/bssa0770020347

Dewey, J.W., Suárez, G. (1991). Seismotectonics of middle America, En A. Slemmons, D.B., Engdahl, E.R., Zoback, M.D., and Blackwell, D.D. (Eds.) Neotectonicas of North America (pp. 309-321). Geological Society of America. doi: https://doi.org/10.1130/DNAG-CSMS-NEO.309

Dreger, D.S. (2003) TDMT_INV: time domain seismic moment tensor inversion. International Geophysics, 81(B), 1627. doi: https://doi.org/10.1016/S0074-6142(03)80290-5

Dreger, D. S., Helmberger, D. V. (1993). Determination of source parameters at regional distances with three-component sparse network data. Journal of Geophysical Research: Solid Earth, 98(B5), 8107-8125. doi: https://doi.org/10.1029/93jb00023

Duputel, Z., Rivera, L., Kanamori, H., Hayes, G. (2012). W-phase fast source inversion for moderate to large earthquakes (1990 - 2010). Geophysical Journal International, 189(2), 1125-1147. doi: https://doi.org/10.1111/j.1365-246X.2012.05419.x

Figueroa, J. (1964). El macrosismo de Jáltipan. 1. Sismologia. Ingeniería, July, 357-362.

Franco, S. I., Canet, C., Iglesias, A., Valdés-González, C. (2013). Seismic activity in the Gulf of Mexico. A preliminary analysis. Boletín de la Sociedad Geologíca Mexicana, 65(3), 447-455.

Frohlich, C. A. (1982). Seismicity of the central Gulf of Mexico. Geology, 10(2), 103-106. doi: https://doi.org/10.1130/0091-7613(1982)10<103:SOTCGO>2.0.CO;2

Fukuyama, E., Dreger, D. S. (2000). Performance test of an automated moment tensor determination system for the future “Tokai” earthquake. Earth, Planets and Space, 52(6), 383-392. doi: https://doi.org/10.1186/bf03352250

Hayes, G. P., Rivera, L., Kanamori, H. (2009). Source Inversion of the W-Phase: Real-time Implementation and Extension to Low Magnitudes. Seismological Research Letters, 80(5), 817-822. doi: https://doi.org/10.1785/gssrl.80.5.817

Herrmann, R. B. (1985). An extension of random vibration theory estimates of strong ground motion at large distances. Bulletin of the Seismological Society of America, 75(5), 1447-1453. doi: https://doi.org/10.1785/BSSA0750051447

Kanamori, H., Rivera, L. (2008). Source inversion of W phase: speeding up seismic tsunami warning. Geophysical Journal International, 175(1), 222-238. doi: https://doi.org/10.1111/j.1365-246x.2008.03887.x

Nuttli, O. W. (1983). Average seismic source-parameter relations for mid-plate earthquakes. Bulletin of the Seismological Society of America, 73(2), 519-535. doi: https://doi.org/10.1785/bssa0730020519

Ordaz, M., Arboleda, J., Singh, S.K. (1995). A scheme of random summation of an empirical Green´s function to estimate ground motions from future large earthquakes. Bulletin of the Seismological Society of America, 85(6), 1635-1647. doi: https://doi.org/10.1785/BSSA0850061635

Pérez-Campos, X., Espíndola, V. H., Pérez, J. et al. (2019). Servicio Sismológico Nacional, Mexico. Summary of the Bulletin of the International Seismological Centre, 53(II), 29-40. doi: https://doi.org/10.31905/sz7rybtm

Reséndiz, D. (1964). El macrosismo de Jáltipan. 2. Suelos. Ingeniería, July, 362-379.

Rosenblueth, E. (1964). El macrosismo de Jáltipan. Introducción. Ingeniería, July, 357.

Shapiro, N. M., Singh, S. K., Iglesias-Mendoza, A., Cruz-Atienza, V. M., Pacheco, J. F. (2000). Evidence of low Q below Popocatépetl Volcano, and its implication to seismic hazard in Mexico City. Geophysical Research Letters, 27(17), 2753-2756. doi: https://doi.org/10.1029/1999gl011232

Singh, S.K., Pacheco, J.F., Garcia, D., Iglesias, A. (2006). An estimate of shear-vave Q of the mantle wedge in Mexico. Bulletin of the Seismological Society of America, 96, 176–187, doi: https://doi.org/10.1785/0120050001

Singh, S. K., Iglesias, A., García, D., Pacheco, J. F., Ordaz, M. (2007). Q of Lg Waves in the Central Mexican Volcanic Belt. Bulletin of the Seismological Society of America, 97(4), 1259-1266. doi: https://doi.org/10.1785/0120060171

Singh, S.K., Pacheco, J. F., Pérez-Campos, X., Ordaz, M., Reinoso, E. (2015). The 6 September 1997 (Mw4.5) Coatzacoalcos-Minatitlan, Veracruz, Mexico earthquake: implications for tectonics and seismic hazard of the region. Geofísica International, 54(3), 289-298. doi: https://doi.org/10.1016/j.gi.2015.08.001

Singh, S.K., Arroyo, D., Pérez-Campos, X., Iglesias, A., Espíndola, V.H., Ramírez, L. (2017). Guadalajara, Mexico, earthquake sequence of December 2015 and May 2016: source, Q, and ground motions. Geofísica Internacional, 56(2), 173-186. doi: https://doi.org/10.22201/igeof.00167169p.2017.56.2.1764

Suárez, G., López, A. C. G. (2015). Seismicity in the southwestern Gulf of Mexico: evidence of active back arc deformation. Revista Mexicana de Ciencias Geológicas, 32(1), 77-83. http://www.redalyc.org/pdf/572/57237105007.pdf

Suárez, G. (2000). Reverse faulting in the Isthmus of Tehuantepec: Backarc deformation induced by the subduction of the Tehuantepec ridge, En A. Delgado, H., Aguirre, G., Stock, J., (Eds). Cenozoic Tectonics and Volcanism of Mexico (pp. 263‐268) Geological Society of. America. doi: https://doi.org/10.1130/0-8137-2334-5.263

Most read articles by the same author(s)

1 2 > >>