Ruby Xenocrystals in Dacite from Central Mexico

Main Article Content

Luis Enrique Ortiz Hernández
Jose Cruz Escamilla Casas

Abstract




The occurrence of 1-2 cm in diameter, anhedral xenocrystals of red corundum (ruby) in a dacitic lava- flow from central Mexico -in the state of Hidalgo- has been recorded. Geochemically, this dacite nearly resembles adakitic rock (SiO2=63.73 66.64 wt %), with low alumina contents (Al2O3=14.38 14.93 wt %), sodium (Na2O=3.29 3.57wt %) and titanium (TiO2=0.55 0.60 wt %), slightly peraluminous (A/ CNK=1.04 1.17) and moderately potassic (K2O=1.90-2.04 wt %; K2O/Na2O=0.53-0.62), with rare earth spectra enriched in light-rare earth elements (La/Yb)N=9.71 10.98. The origin of the dacite is linked to the early geological evolution of the eastern sector of the Trans-Mexican Volcanic Belt (TMVB) during the Miocene, and its provenance could be a melt of a basaltic and pelitic-sediments slab and magmatic differentiation that generated adakitic magma. The gem-type corundum could have resulted after the addition of refractory products disaggregated from the Precambrian basement, carried, and transported to the surface by ascending magma.




Article Details

How to Cite
Ortiz Hernández, L. E., & Escamilla Casas, J. C. (2024). Ruby Xenocrystals in Dacite from Central Mexico. Geofisica Internacional, 63(3), 977–988. https://doi.org/10.22201/igeof.2954436xe.2024.63.3.1727
Section
Article

References

Aguirre-Díaz, G. J., Dubois M., Laureyns J., & Schaaf, P. (2002) Nature and P-T conditions of the crust beneath the Central Mexican Volcanic Belt based on a Precambrian crustal xenolith. International Geology Review, 44(3), 222–242. doi: https://doi.org/10.2747/0020-6814.44.3.222 DOI: https://doi.org/10.2747/0020-6814.44.3.222

Aparicio-Canales, O., & Contreras-Cruz, D. (2016). Caracterización petrográfica y geoquímica de las rocas volcánicas del área de Epazoyucan-Singuilucan, estado de Hidalgo [Tesis de Licenciatura], Universidad Autónoma del Estado de Hidalgo.

Bellot, N., Boyet, M., Doucelance, R., Bonnand, P., Savov, I. P., Plank, T., & Elliott, T. (2018). Origin of negative cerium anomalies in subduction-related volcanic samples: Constraints from Ce and Nd isotopes. Chemical Geology, 500, 46–63. doi: https://doi.org/10.1016/j.chemgeo.2018.09.006 DOI: https://doi.org/10.1016/j.chemgeo.2018.09.006

Baumgartner, L. P., Fernando, G. W. A. R., Hauzenberger, C. A., & Hofmeister, W. (2001 April 4–10). A Metamorphic Petrologist’s View on Gemstone Formation: An Example from Sri Lanka. Proceedings of the International Workshop on Material Characterization by Solid State Spectroscopy: The Minerals of Vietnam, Hanoi.

Carrasco-Nuñez, G., Righter, K., Chesley, J., Siebert L., & Aranda-Gómez, J. J. (2005). Contemporaneous eruption of calc-alkaline and alkaline lavas in the continental arc (Eastern Mexican Volcanic Belt): chemically heterogeneous but isotopically homogeneous source. Mineralogy and Petrology, 150, 423–440. DOI: https://doi.org/10.1007/s00410-005-0015-x

Cruz-Ocampo, J. C., Canet, C., & Peña-García, F. (2007). Las gemas de México. Boletín de la Sociedad Geológica Mexicana, LIX(1), 9–18. DOI: https://doi.org/10.18268/BSGM2007v59n1a2

Dahanayake, K., & Ranasinghe, A. P. (1981). Source rocks of gem minerals. A case study from Sri Lanka. Mineral Deposita, 16, 103–111. DOI: https://doi.org/10.1007/BF00206457

Defant M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young, subducted lithosphere. Nature, 347, 662–665. DOI: https://doi.org/10.1038/347662a0

Devine, J. D., Murphy, M. D., Rutherforld, M. J., Barclay, J., Sparks, R. S. J., Young S. R., & Gardner, J. E. (1998). Petrologic evidence for pre-eruptive pressure-temperature conditions, and recent reheating, of andesitic magma erupting at the Soufriere Hills Volcano, Montserrat, W.I. Geophysical Research Letters, 25(19), 3669–3672. DOI: https://doi.org/10.1029/98GL01330

Dill, H. G. (2018). Gems and placers-A genetic relationship par excellence. Minerals 8, 470–513. DOI: https://doi.org/10.3390/min8100470

Dimalanta, C. B., & Yumul, G. P. Jr. (2008). Crustal thickness and adakite occurrence in the Philippines: Is there a relationship? Island arc, 17 (4), 421–431. DOI: https://doi.org/10.1111/j.1440-1738.2008.00634.x

Drummond, M. S., & Defant, M. J. (1990). A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research 95(B13), 21503–21521. DOI: https://doi.org/10.1029/JB095iB13p21503

Drummond, M. S., Defant, & Kepezhinskas, M. J., (1996). Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of Edimburgh, Earth Sciences, 87, 205–215. DOI: https://doi.org/10.1017/S0263593300006611

Dubinski, E. V., Stone-Sundberg, J., Emmett, J. L. (2020). A quantitative description of the causes of color in corundum. Gems & Gemology, 56(1), 2–28. doi: http://dx.doi.org/10.5741/GEMS.56.1.2. DOI: https://doi.org/10.5741/GEMS.56.1.2

Elías-Herrera, M., & Ortega-Gutiérrez, F. (1997). Petrology of high-grade metapelitic xenoliths in an Oligocene rhyolite plug-Precambrian crust beneath the southern Guerrero terrane, México? Revista Mexicana de Ciencias Geológicas, 14, 101–109.

Elliott, T., Plank, T., Zindler, A., White, W., & Bourdon, B. (1997). Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102(B7), 14991-15019. doi: https://doi.org/10.1029/97JB00788 DOI: https://doi.org/10.1029/97JB00788

Ferrari, L., Orozco-Esquivel, T., Manea, V., & Manea, M. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522–523, 122–149. doi: https://doi.org/10.1016/j.tecto.2011.09.018 DOI: https://doi.org/10.1016/j.tecto.2011.09.018

García-Lastra, J. M, Barriuso, M. T, Aramburu, J. A, & Moreno, M. (2005). Origin of the different color of ruby and emerald. Physical Review B 72(113104). doi: https://doi.org/10.1103/PhysRevB.72.113104. DOI: https://doi.org/10.1103/PhysRevB.72.113104

García-Palomo, A., Macías, J. L., Tolson, G., Valdez, G., & Mora, J. C. (2002). Volcanic stratigraphy and geological evolution of the Apan region, east-central sector of the Trans-Mexican Volcanic Belt. Geofísica Internacional, 41(2), 133–150. doi: https://doi.org/10.22201/igeof.00167169p.2002.41.2.282

García-Tovar, G. P. Martínez-Serrano, R. G., Solé, J., Correa-Tello, J. C., Núñez-Castillo, E. Y., Guillou, H., & Monroy-Rodríguez, E. (2015). Geología, geocronología y geoquímica del vulcanismo Plio-Cuaternario del campo volcánico Apan-Tecocomulco, Faja Volcánica Trans-Mexicana. Revista Mexicana de Ciencias Geológicas, 32, 100–122.

Geyne, A. R., Fries Jr., C., Segerstrom K., Black R. F., & Wilson I. F. (1963). Geology and mineral deposits of the Pachuca-Real del Monte district, State of Hidalgo, Mexico. Consejo de Recursos Naturales No Renovables, publication 5E.

Geyne, A. R., Fries Jr., C., Segerstrom, K., Black, R. F., & Wilson, I. F. (1990). Geology and mineral deposits of the Pachuca-Real del Monte district, Hidalgo, México. In Silver deposits of Mexico, Geological Society of America Bulletin, 241–258.

Giuliani, G., Groat, L. A., Fallick, A. E, Pignatelli, I., & Pardieu, V. (2020). Ruby Deposits: A Review and Geological Classification. Minerals, 10(7), 597. doi: https://doi.org/10.3390/min10070597 DOI: https://doi.org/10.3390/min10070597

Giuliani G., Ohnenstetter D., Fallick A. E., Groat L. A., & Fagan A. J. (2014). The geology and genesis of gem corundum deposits. In L. A. Groat (Ed.), Geology of Gem Deposits (2nd ed., 29–112). Mineralogical Association of Canada, Short Course Series 44.

Gómez-Tuena, A., LaGatta, A., Langmuir, C., Goldstein, S., Ortega-Gutiérrez, F., & Carrasco-Núñez, G. (2003). Temporal control of subduction magmatism in the Eastern Trans-Mexican Volcanic Belt: mantle sources, slab contributions and crustal contamination. Geochemistry, Geophysics, Geosystems, 4(8), 8912. doi: https://doi.org/10.1029/2003GC000524 DOI: https://doi.org/10.1029/2003GC000524

Hastie, A. R., Ramsook, R., Mitchell, S. F., Kerr, A. C., Millar, I. L., & Mark, D. F. (2010). Geochemistry of Compositionally Distinct Late Cretaceous Back-Arc Basin Lavas: Implications for the Tectonomagmatic Evolution of the Caribbean Plate. The Journal of Geology, 118(6), 655–676. doi: https://doi.org/10.1086/656353 DOI: https://doi.org/10.1086/656353

Hayob, J. L., Essene, E. J., Ruiz, J., Ortega-Gutiérrez, F., & Aranda-Gómez, J. J. (1989). Young high-temperature granulites from the base of the crust in central Mexico. Nature, 342, 265–268. DOI: https://doi.org/10.1038/342265a0

Hollocher, K. (2004). CIPW Norm Calculation Program. Geology Department, Union College.

Juárez-López, K. (2015). Evidencias de procesos magmáticos: Caracterización geoquímica e isotópica (Sr, Nd y Pb) del Campo Volcánico Chichicuatla-Tecocomulco, Estado de Hidalgo [Tesis de Maestría] Universidad Nacional Autónoma de México.

Jung, S., & Pfänder, J. A. (2007). Source composition and melting temperatures of orogenic granitoids–constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy 19(6), 859–870. doi: https://doi.org/10.1127/0935-1221/2007/0019-1774 DOI: https://doi.org/10.1127/0935-1221/2007/0019-1774

Kamei, A., Miyake, Y, Owada, M., & Kimura, J. I. (2009). A pseudo adakite derived from partial melting of tonalitic to granodioritic crust, Kyushu, southwest Japan arc. Lithos, 12, 615–625. DOI: https://doi.org/10.1016/j.lithos.2009.05.024

Kriegsman, L. M., & Schumacher, J. C. (1999). Petrology of sapphirine-bearing and associated granulites from central Sri Lanka. Journal of Petrology, 40, 1211–1239. DOI: https://doi.org/10.1093/petrology/40.8.1211

Lawlor, P. J., Ortega-Gutiérrez, F., Cameron, K. L., Ochoa-Camarillo, H., Lopez, R, & Sampson, D. E. (1999). U-Pb geochronology, geochemistry, and provenance of the Grenvillian Huiznopala Gneiss of eastern Mexico. Precambrian Research, 94, 73–99. DOI: https://doi.org/10.1016/S0301-9268(98)00108-9

Levinson, A. A, & Cook, F. A. (1995). Gem corundum in alkali basalt: origin and occurrence. Gems & Gemology, 30(4), 253–262. DOI: https://doi.org/10.5741/GEMS.30.4.253

Liu, S. A., Li, S. G., He, Y. S., & Huang, F. (2010). Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica acta, 74, 7160–7178. DOI: https://doi.org/10.1016/j.gca.2010.09.003

Mantle, G. W., & Collins, W. J. (2008). Quantifying crustal thickness variations in evolving orogens: Correlation between arc basalt composition and Moho depth. Geology, 36(1), 87–90. doi: https://doi.org/10.1130/g24095a.1 DOI: https://doi.org/10.1130/G24095A.1

Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F., & Champion, D. (2005). An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1–24. DOI: https://doi.org/10.1016/j.lithos.2004.04.048

Martínez-González, I. R. (2018). Aportaciones petrográficas, geoquímicas e isotópicas en la caracterización petrogenética de rocas volcánicas de la sierra de Pachuca. [Tesis de Licenciatura]. Universidad Nacional Autónoma de México.

Mori, L., Gómez-Tuena, A., Cai, Y., & Goldstein, S. (2007). Effects of prolonged flat subduction on the Miocene magmatic record of the central Trans–Mexican Volcanic Belt. Chemical Geology, 244, 452–473. DOI: https://doi.org/10.1016/j.chemgeo.2007.07.002

Moyen, J. F. (2009). High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos, 112, 556–574. DOI: https://doi.org/10.1016/j.lithos.2009.04.001

Nebel, O., Münker, C., Nebel-Jacobsen, Y. J., Kleine, T., Mezger, K., & Mortimer, N. (2007). Hf–Nd–Pb isotope evidence from Permian arc rocks for the long-term presence of the Indian–Pacific mantle boundary in the SW Pacific. Earth and Planetary Science Letters 254, 377–392. DOI: https://doi.org/10.1016/j.epsl.2006.11.046

Núñez-Velázquez, M. V. (2018). Volcán Las Navajas estado de Hidalgo: características geoquímicas e isotópicas del magmatismo peralcalino en la Faja Volcánica Transmexicana. [Tesis de Licenciatura]. Universidad Nacional Autónoma de México.

Ortega-Gutiérrez, F., Elías-Herrera, M., & Dávalos-Elizondo, M. G. (2008). On the nature and role of the lower crust in the volcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region, southern and central Mexico. Revista Mexicana de Ciencias Geológicas, 25, 346–364.

Ortega-Gutiérrez, F, Elías-Herrera, M, Gómez-Tuena, A., Mori L., Reyes-Salas, M, Macías-Romo, C., & Solari, L. A. (2012). Petrology of high-grade crustal xenoliths in the Chalcatzingo Miocene subvolcanic field, southern Mexico: buried basement of the Guerrero-Morelos platform and tectonostratigraphic implications. International Geology Review 54(14), 1597–1634. DOI: https://doi.org/10.1080/00206814.2011.649956

Ortega-Gutiérrez, F., Gómez-Tuena, A., Elías-Herrera, M., Reyes-Salas, M., & Macías-Romo, C. (2014). Petrology and geochemistry of the Valle de Santiago lower-crust xenoliths: Young tectonothermal processes beneath the central Trans-Mexican volcanic belt. Lithosphere, 6(5), 335–360. doi: https://doi.org/10.1130/L317.1 DOI: https://doi.org/10.1130/L317.1

Ortega-Gutiérrez, F., Martiny B. M., Morán-Zenteno, D. J., Reyes-Salas, A. M., & Solé-Viñas, J. (2011). Petrology of very high temperature crustal xenoliths in the Puente Negro intrusion: a sapphire-spinel-bearing Oligocene andesite, Mixteco terrane, southern Mexico. Revista Mexicana de Ciencias Geológicas, 28(3), 593–629.

Ortega-Gutiérrez, F., Ruiz, J., & Centeno-García, E. (1995). Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic. Geology, 23(12), 1127–1130. DOI: https://doi.org/10.1130/0091-7613(1995)023<1127:OAPMAT>2.3.CO;2

Pearce, J. A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In C. J. Hawkesworth & M. J. Norry (Eds.), Continental basalts and mantle xenoliths. Shiva Publications, 230–249.

Profeta, L., Ducea, M. N., Chapman, J. B., Paterson, S. R., Gonzales, S. M. H., Kirsch, M., Petrescu, L., & DeCelles, P.G. (2015). Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5, 17786. doi: https://doi.org/10.1038/srep17786 DOI: https://doi.org/10.1038/srep17786

Ramírez-Ramírez, B. B. (2016). Campo volcánico San Vicente, estado de Hidalgo, Faja Volcánica Trans-mexicana: variaciones geoquímicas e isotópicas y su relación con el retroceso del arco hacia la trinchera. [Tesis de Licenciatura]. Instituto Politécnico Nacional, ESIA-Unidad Ticomán.

Rapp, R. P., Shimizu, N., & Norman, M. D. (2003). Growth of early continental crust by partial melting of amphibolite. Nature, 425, 605–809. DOI: https://doi.org/10.1038/nature02031

Roberts, S. J., Ruiz, J. (1989). Geochemistry of Exposed Granulite Facies Terrains and Lower Crustal Xenoliths in Mexico. Journal of Geophysical Research, 94(B6), 7961–7974. DOI: https://doi.org/10.1029/JB094iB06p07961

Rollinson, H. (1993). Using geochemical data: evaluation, presentation, interpretation. Pearson.

Rudnik, R. L., & Fountain, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics 33(3), 267–309. DOI: https://doi.org/10.1029/95RG01302

Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. In Treatise on Geochemistry, 3, 1–64. Elsevier Ltd. DOI: https://doi.org/10.1016/B0-08-043751-6/03016-4

Ruiz, J., Patchett, P. J., & Ortega-Gutiérrez, F. (1988). Proterozoic and Phanerozoic basement terranes of Mexico from Nd isotopic studies. Geological Society of America Bulletin, 100, 274–281. DOI: https://doi.org/10.1130/0016-7606(1988)100<0274:PAPBTO>2.3.CO;2

Sedlock, R. L., Ortega-Gutiérrez, F., & Speed, R. C. (1993). Tectonostratigraphic terranes and tectonic evolution of Mexico. Geological Society of America Special Paper, 278, 1–153. DOI: https://doi.org/10.1130/SPE278-p1

Simonet, C., Fritsch, E., & Lasnier, B. (2008). A classification of gem corundum deposits aimed towards gem exploration. Ore Geology Reviews, 34, 127–133. DOI: https://doi.org/10.1016/j.oregeorev.2007.09.002

Stern, R. J., Tsujimori, T., Harlow, G., & Groat, L. A. (2013). Plate tectonic gems, Geology, 41(7), 723–726. doi: https://doi.org/10.1130/G34204.1 DOI: https://doi.org/10.1130/G34204.1

Sun, S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345. DOI: https://doi.org/10.1144/GSL.SP.1989.042.01.19

Sun, W. D., Ling, M. X., Chung, S. L., Ding, X., Yang, X. Y., Liang, H. Y., Fan, W. M., Goldfarb, R., & Yin, Q. Z. (2012). Geochemical constraints on adakites of different origins and copper mineralization. The Journal of Geology, 120, 105–120. DOI: https://doi.org/10.1086/662736

Sundell, K. E., Laskowski, A. K., Kapp, P. A., Ducea, M. N., & Chapman, J. B. (2021). Jurassic to Neogene quantitative crustal thickness estimates in southern Tibet. Geological Society of America Today, 31(6), 4–10. doi: https://doi.org/10.1130/gsatg461a.1 DOI: https://doi.org/10.1130/GSATG461A.1

Ueki K, Hino H., & Kuwatani T. (2022). Extracting the geochemical characteristics of magmas in different global tectono-magmatic settings using sparse modeling. Frontiers in Earth Sciences, 10. doi: https://doi.org/10.3389/feart.2022.994580 DOI: https://doi.org/10.3389/feart.2022.994580

Urrutia-Fucugauchi, J., Flores-Ruiz, J. (1996). Bouguer gravity anomalies and regional crustal structure in central Mexico. International Geology Reviews, 38, 176–194. DOI: https://doi.org/10.1080/00206819709465330

Urrutia-Fucugauchi, J., Uribe-Cifuentes, R. M. (1999). Lower-crustal xenoliths from the Valle de Santiago maar field, Michoacán-Guanajuato volcanic field, central Mexico. International Geology Review, 41, 1067–1081. DOI: https://doi.org/10.1080/00206819909465192

Valadez-Cabrera, S. (2012). Caracterización petrológica del Campo volcánico Xihuingo-La Paila, Estado de Hidalgo: Evidencias Geoquímicas e Isotópicas de Sr, Nd y Pb [Tesis de Maestría]. Universidad Nacional Autónoma de México.

Voudouris, P., Mavrogonatos, C. Graham, C. J., Giuliani, G., Melfos, V., Karampelas, S., Karantoni, V., Wang, K., Tarantola, A., Zaw, K., Meffre, S., Klemme, S., Berndt, J., Heidrich, S., Zaccarini, F., Fallick, A., Tsortanidis, M., & Lampridis, A. (2009). Gem corundum deposits of Greece: Geology, mineralogy and genesis. Minerals, 9(1), 49. doi: https://doi.org/10.3390/min9010049 DOI: https://doi.org/10.3390/min9010049

Wang, Q., Xu, J. F., Jian, P., Bao, Z. W., Zhao, Z. H., Li, C. F., Xiong, X. L., & Ma, J. J. (2006). Petrogenesis of adakitic phorphyries in an extensional tectonic setting, Dexing, south China: implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47, 119–144. DOI: https://doi.org/10.1093/petrology/egi070

Wilson, A.F. (1974). The mineral potential of granulite terranes and other highly metamorphosed segments of the earth's crust. Annales de la Société géologique de Belgiqu. Publications spéciales special publications, Géologie des domaines cristallins - Centenaire de la Société géologique de Belgique, 301–321. Recuperado de: https://popups.uliege.be/0037-9395/index.php?id=3732.

Woodhead, J. D., Hergt, J. M., Davidson, J. P. & Eggins, S. M. (2001). Hafnium isotope evidence for ‘conservative’ element mobility during subduction processes. Earth and Planetary Science Letters 192, 331–346. DOI: https://doi.org/10.1016/S0012-821X(01)00453-8

Wong, J., & Verdel, C., 2017. Tectonic environments of sapphire and ruby revealed by a global oxygen isotope compilation. International Geology Review, 60(2), 188–195. doi: https://doi.org/10.1080/00206814.2017.1327373 DOI: https://doi.org/10.1080/00206814.2017.1327373

Zhang, L., Li S., Zhao, Q., 2019. A review of research on adakites. International Geology Review, 1-18. doi: https://doi.org/10.1080/00206814.2019.1702592 DOI: https://doi.org/10.1080/00206814.2019.1702592