Experimental Bedford limestone permeability dependence on confining stress and pore pressure. A comparative study with previous works

Main Article Content

Aarón Domínguez Torres
Enrique Serrano Saldaña
Manuel Coronado
Martín Alberto Díaz Viera
Ivan Llanos Rivera

Abstract




The impact of changes in the state of the confining stress and pore pressure on the permeability of a rock is especially important in the exploitation of oil reservoirs, particularly due to the decreases in the reservoir fluid pressure during the extraction of hydrocarbons. Over the years, numerous experimental studies have been conducted with core samples that have shown a wide range of responses. In the present study, this effect was analyzed in Bedford limestone. Two different modes of confinement, hydrostatic and non-hydrostatic, are investigated. The permeability data obtained from the experiments are fitted to commonly used models based on confining stress, core pressure and effective stress. The results indicate that the linear models offer a satisfactory fit in both confinement modes. A relatively high effective stress coefficient of 5.78 is observed in the hydrostatic mode, while an unusual negative value of -1.63 is found in the non-hydrostatic mode. These results were examined in the context of published perme- ability data and fitting models. To facilitate this analysis, complete tables were prepared that integrate the information available from the literature on permeability experiments in sandstones and limestones.




Article Details

How to Cite
Domínguez Torres, A. ., Serrano Saldaña, E., Coronado, M. ., Díaz Viera, M. A., & Llanos Rivera, I. (2024). Experimental Bedford limestone permeability dependence on confining stress and pore pressure. A comparative study with previous works. Geofisica Internacional, 63(3), 1007–1032. https://doi.org/10.22201/igeof.2954436xe.2024.63.3.1742
Section
Article
Author Biographies

Aarón Domínguez Torres, Instituto Mexicano del Petróleo (IMP) Eje Central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacán, Gustavo A. Madero, Ciudad de México.

Aarón Domínguez Torres is a student at the Mexican Petroleum Institute. His main research lines are fluid flow and rock mechanics. A. Domínguez is an electromechanical engineer graduated from Superior Technological Institute of San Andres Tuxtla, holds MSc in science in thermal fluids at the National Polytechnic Institute.



Enrique Serrano Saldaña, Instituto Mexicano del Petróleo (IMP) Eje Central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacán, Gustavo A. Madero, Ciudad de México.

Enrique Serrano Saldaña is a specialist and research scientist at the Mexican Petroleum Institute in Mexico City. His research is focused on enhanced oil recovery. E. Serrano is a chemist graduated from National University of Mexico, holds a MSc in physical chemistry of surfaces in Metropolitan University and holds a PhD in mechanical engineering (thermal fluids) in National University of Mexico. He is an author of publications in international journals.

Manuel Coronado, Instituto Mexicano del Petróleo (IMP) Eje Central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacán, Gustavo A. Madero, Ciudad de México.

Manuel Coronado is a research scientist at the Mexican Petroleum Institute, in Mexico City. His main research lines are fluid flow and transport processes in oil reservoirs. M. Coronado is a physicist graduated from the National University of Mexico and holds a PhD in physics from the Technical University of Munich in Germany. He is the author of many publications in international journals and is member of the Mexican Academy of Sciences.

Martín Alberto Díaz Viera, Instituto Mexicano del Petróleo (IMP) Eje Central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacán, Gustavo A. Madero, Ciudad de México.

Martín A. Díaz-Viera is a scientific researcher at the Mexican Petroleum Institute conducting research on fields of Geostatistics and Stochastic Modeling for Reservoir Characterization and Mathematical and Computational Modeling of Oil Recovery Processes. He is one of the editors of the book Mathematical and Numerical Modeling in Porous Media: Applications in Geosciences.

Ivan Llanos Rivera, Instituto Mexicano del Petróleo (IMP) Eje Central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacán, Gustavo A. Madero, Ciudad de México.

Iván Llanos Rivera is specialist in hydrocarbon recovery at the Mexican Petroleum Institute. His mind line is focused on the development and innovation of experimental devices for tests at reservoir conditions. He is an electromechanical engineer by the Tlalnepantla Institute of Technology, Mexico City.

References

Al-Wardy, W., & Zimmerman, R. W. (2004). Efective stress law for the permeability of clay-rich sandstones. J. Geophys. Res.: Solid Earth. 109(B4), 1-10. doi:10.1029/2003JB002836. DOI: https://doi.org/10.1029/2003JB002836

Asaei, H., & Moosavi, M. (2013). Experimental measurement of compressibility coefficients of synthetic sandstone in hydrostatic conditions. J. Geo-Eng, 10(5), 055002. doi:10.1088/1742-2132/10/5/055002 DOI: https://doi.org/10.1088/1742-2132/10/5/055002

Bear, J. (1972). Dynamics of fluids on porous media. New York.

Bernabé, Y. (1986). The effective pressure law for permeability in Chelmsford granite and Barre granite. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 23(3), 267-275. doi:10.1016/0148-9062(86)90972-1 DOI: https://doi.org/10.1016/0148-9062(86)90972-1

Bernabé, Y. (1987). The effective pressure law for permeability during pore pressure and confiningg pressure cycling of several crystalline rocks. J. Geophy. Res.: Solid Earth. 92(B1), 649-657. doi:10.1029/JB092iB01p00649 DOI: https://doi.org/10.1029/JB092iB01p00649

Bernabé, Y. (1988). Comparison of the efective pressure law for permeability and resistivity formation factor in chelmsford granite. Pure Appl. Geophys. 127(4), 607-625. doi:/10.1007/BF00881747 DOI: https://doi.org/10.1007/BF00881747

Berryman, J. G. (1992). Effective stress for transport properties of in homogeneous porous rock. J. Geophy. Res.: Solid Earth. 97(B12), 17409-17424. doi:10.1029/92JB01593 DOI: https://doi.org/10.1029/92JB01593

Bohnsack, D., Potten, M., Freitag, S., Einsiedl, F., & Zosseder, K. (2021). Stress sensitivity of porosity and permeability under varying hydrostatic stress conditions for different carboonate rock types of the feothermal malm reservoir in southerm germany. Geothermal Energy. 9(15), 1-59. doi: https://doi.org/10.1186/s40517-021-00197-w DOI: https://doi.org/10.1186/s40517-021-00197-w

Choi, C. S., Cheon, D. S., & Song, J. J. (2017). Effect of pore and confining pressure on the supercritical CO2 permeability of sandstone: implications for the efffective pressure law. Geophy. Res. J.: Solid Earth. 122(8), 6231-6246. doi: https://doi.org/10.1002/2017JB014475 DOI: https://doi.org/10.1002/2017JB014475

Coronado, M. (2019). Technical Report Proyect 280097. IMP (Y.61066). Mexican Petroleum Institute, Fondo Sectorial Conacyt-Sener-Hidrocarburos, México.

Da Silva, M. R., Schroeder, C., & Verbrugge, J. C. (2010). Poroelastic behaviour of a water-saturated limestone. Int. J. Rock Mech. Min. Sci. 47(5), 797-807. doi: https://doi.org/10.1016/j.ijrmms.2010.04.004 DOI: https://doi.org/10.1016/j.ijrmms.2010.04.004

David, C., Wong, T. F., Zhu, W., & Zhang, J. (1994). Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust. Pure Appl. Geophys. 143, 425-456. doi: https://doi.org/10.1007/BF00874337 DOI: https://doi.org/10.1007/BF00874337

Dobrynin, V. M. (1962). Effect of overburden pressure on some properties of sandstones. SPE Journal. 2(04), 360-366. doi: http://doi.org/10.2118/461-PA DOI: https://doi.org/10.2118/461-PA

Dong, J.-J., Hsu, J.-Y., Wu, W.-J., Shimamoto, T., Hung, J.-H., Yeh, E.-C., Sone, H. (2010). Stress-dependence of the permeability and porrosity of sandstone and shale from TCDP Hole-A. Int. J. Rock Mech. Min. Sci. 47, 1141-1157. doi: https://doi.org/10.1016/j.ijrmms.2010.06.019 DOI: https://doi.org/10.1016/j.ijrmms.2010.06.019

Feng, K., Wang, K., & Yang, Y. (2021). Experimental study on the deformation and permeability characteristic of raw coal under the coupling effect of confining pressure and pore pressure. Advances in Mat Scie. Eng. 1-8. doi: https://doi.org/10.1155/2021/9983975 DOI: https://doi.org/10.1155/2021/9983975

Ghabezloo, S., Sulem, J., Guédon, S., & F., M. (2009). Effective stress law for the permeability of a limestone. Int. J. Rock Mech. Min. Sci. 46(2), 297-306. doi: https://doi.org/10.1016/j.ijrmms.2008.05.006 DOI: https://doi.org/10.1016/j.ijrmms.2008.05.006

Glowacki, A., & Selvadurai, A. (2016). Stress-induced permeability changes in indiana limestone. Engineering Geology. 215, 122-130. doi: https://doi.org/10.1016/j.enggeo.2016.10.015 DOI: https://doi.org/10.1016/j.enggeo.2016.10.015

Han, J., Wu, C., Jiang, X., Fang, X., & Zhang, S. (2022). Investigation on effective stress coefficients and stress sensitivity of different water-saturated coals using the response surface method. Fuel. 316(123238). doi: https://doi.org/10.1016/j.fuel.2022.123238 DOI: https://doi.org/10.1016/j.fuel.2022.123238

Hart, D. J., & Wang, H. F. (1995). Laboratory measurement of a complete set of poroelastic moduli for Berea sandstone and indiana limestone. J. Geophys. Res.: Solid Earth. 100(B9), 17741-17751. doi: https://doi.org/10.1029/95JB01242 DOI: https://doi.org/10.1029/95JB01242

Li, M., Bernabé, Y., Xiao, W., Chen, Z., & Liu, Z. (2009). Effecctive pressure law for permeability of E-bei sandstones. J. Geophy. Res.: Solid Earth. 114(B7), 1-13. doi: https://doi.org/10.1029/2009JB006373 DOI: https://doi.org/10.1029/2009JB006373

Li, M., Xiao, L., Bernabé, Y., & Zhao, J. (2014). Nonlinear effective pressure law for permeability. J. Geophys. Res. Solid Earth. 119(1), 302-318. doi: https://doi.org/10.1002/2013JB010485 DOI: https://doi.org/10.1002/2013JB010485

Lisabeth, H., & Zhu, W. (2015). Effect of temperature and pore fluid on the stregth of porous limestone. J. Geophys. Res.: Soil Earth. 120(9), 6191-6208. doi: https://doi.org/10.1002/2013JB01048510.1002/2015JB012152 DOI: https://doi.org/10.1002/2015JB012152

McPhee, C., Redd, J., Zubizarreta, I. (2015). Core analysis: a best practice guide. (Vol. 64). (J. Cubitt, Ed.)

Meng, F., Baud, P., Ge, H., & Wong, T. F. (2019). The effect of stress on limestone permeability and effective stress behavior of damaged samples. J. Geophys. Res: Solid Earth. 124(1), 376-399. doi: https://doi.org/10.1029/2018JB016526 DOI: https://doi.org/10.1029/2018JB016526

Nermoen, A., Korsnes, R., Christensen, H., Trads, N., Hiorth, A., & M.V., M. (2013, June). Measuring the biot stress coefficient and is implications on the effective stress estimate. 47th U.S. Rock Mechanics/Geomechanics Symposium. San Francisco, California.

Nolte, S., Fink, R., Krooss, B., & Littke, R. (2021). Simultaneous determination of the effective stress coefficients for permeability and volumetric strain on a tight sandstone. J. Nat. Gas Sci. Eng. 95(104186), 1-10. doi: https://doi.org/10.1016/j.jngse.2021.104186 DOI: https://doi.org/10.1016/j.jngse.2021.104186

Nur, A. M., Walls, J. D., Winkler, K., & DeVilbiss, J. (1980). Effects of fluid saturation on waves in porous rock and relations to hydraulic permeability. SPE J. 20(06), 450-458. doi: https://doi.org/10.2118/8235-PA DOI: https://doi.org/10.2118/8235-PA

Pål Ø, A. (2022). Comparison of intercept methods for correction of state relative permeability experiments for capillary end effects. SPE Res Eval & Eng. 25(04), 882-899. doi: https://doi.org/10.2118/209797-PA DOI: https://doi.org/10.2118/209797-PA

Phillips, O. (1991). Flow and reactions in permable rocks. Cambrige University Press.

Qiao, L., Wong, R., Aguilera, R., & Kantzas, A. (2012). Determination of biot´s effective-stress coefficient for permeability of nikassin sandstone. Journal of Canadian Petroleum Technology. 51(03), 193-197. doi: https://doi.org/10.2118/150820-PA DOI: https://doi.org/10.2118/150820-PA

Rose, J. (n.d.). posit.co. Retrieved from Rstudio Desktop: https://posit.co/download/rstudio-desktop/

Selvadurai A. (2021). Irreversibility of soil skeletal deformations: The pedagogical limitations of terzaghi's celebrated model for soil consolidation. Comput. Geotech. 135, 104137. doi:10.1016/j.compge0.2021.104137. DOI: https://doi.org/10.1016/j.compgeo.2021.104137

Selvadurai, A., & Glowacki, A. (2008). Permeability hysteresis of limestone during isotropic compression. Ground Water. 46(1), 113-119. doi: 10.1111/j.1745-6584.2007.00390.x DOI: https://doi.org/10.1111/j.1745-6584.2007.00390.x

Selvadurai, A., & Glowacki, A. (2017). Stress-induced permeability alterations in an argillaceous limenstone. Rock Mech. Rock Eng. 50, 1079-1096. doi: https://doi.org/10.1007/s00603-016-1153-3 DOI: https://doi.org/10.1007/s00603-016-1153-3

Selvadurai, A., & Selvadurai, P. (2010). Surface permeability tests: experiments and modelling for estimating effective permeability. Proc. R Soc. Lond, A. 466(2122), 2819-2846. doi: https://doi.org/10.1098/rspa.2009.0475 DOI: https://doi.org/10.1098/rspa.2009.0475

Terzaghi, K. (1936). The shearing resistenace of saturated soils. Proc. 1st Int. Conf. SOil Mech, (pp. 54-56). New York.

Vadillo-Sáenz, M. (2022). Simulation of stress tests usuing a poroelastic model to estimate the permeability behavior of Bedford limestone samples. Geofísica Internacional. 61(3), 181-199. doi: https://doi.org/10.22201/igeof.00167169p.2022.61.3.2129 DOI: https://doi.org/10.22201/igeof.00167169p.2022.61.3.2129

Wang, Y., Meng, F., Wang, X., Baud, P., & Wong, T. F. (2018). Effective stress law for the permeability and deformation of four porous limestones. J. Geophys. Res.: Solid Earth. 123(6), 4707-4729. doi: https://doi.org/10.1029/2018JB015539 DOI: https://doi.org/10.1029/2018JB015539

Warspinski, N., & Teufel, L. (1992). Determination of the effective-stress law for permeability and deformation in low-permeability rocks. SPE Form. Eval. 7(02), 123-131. doi: https://doi.org/10.2118/20572-PA DOI: https://doi.org/10.2118/20572-PA

X, Z., Wu, C., & Wang, Z. (2019). Experimental study of the effective stress coefficient for coal permeability with different water saturations. J. Pet. Sci. Eng. 182(106282), 1-10. doi: https://doi.org/10.1016/j.petrol.2019.106282 DOI: https://doi.org/10.1016/j.petrol.2019.106282

Zhao, J., Xiao, W., Li, M., Li, L., & Wang, J. (2011). The effective pressure law for permeability of clay-rich sandstones. Petroleum Science. 8, 194-199. doi: https://doi.org/10.1007/s12182-011-0134-0 DOI: https://doi.org/10.1007/s12182-011-0134-0

Zoback, M., & Byerlee, J. (1975). Permeability and effective stress. Bull Am Assoc. Petr. Geol. 59(1), 154-158. doi: https://doi.org/10.1306/83D91C40-16C7-11D7-8645000102C1865D DOI: https://doi.org/10.1306/83D91C40-16C7-11D7-8645000102C1865D

Most read articles by the same author(s)