Mexico City Earthquake of 11 May 2023 (Mw3.2)

Main Article Content

Luis Quintanar
Shri Krishna Singh
Victor Hugo Espíndola
Arturo Iglesias
Delia Iresine Bello Segura
Danny Arroyo

Abstract

On 11 May 2023 a local earthquake in Mexico City was felt very strongly in Mixcoac, San Angel, and Coyoacán. The event was part of a seismic sequence that had begun about 6 months earlier. Peak Ground Acceleration (PGA) at the closest station (distance ~ 1 km), located in the hill zone, was ~ 0.18 g. Although the response spectrum at short periods at this station exceeded the design spectrum specified in the Mexico City´s Building Code, no structural damage was reported. Moment tensor inversion of bandpass filtered (0.08 – 0.24 Hz) displacement records yields M0 = 6.8x1013 N-m (Mw 3.2), H = 0.7 km, and the likely fault plane characterized by φ = 2700, δ = 760,On 11 May 2023 a local earthquake in Mexico City was felt very strongly in Mixcoac, San Angel, and Coyoacán. The event was part of a seismic sequence that had begun about 6 months earlier. Peak Ground Acceleration (PGA) at the closest station (distance ~ 1 km), located in the hill zone, was ~ 0.18 g. Although the response spectrum at short periods at this station exceeded the design spectrum specified in the Mexico City´s Building Code, no structural damage was reported. Moment tensor inversion of bandpass filtered (0.08 – 0.24 Hz) displacement records yields M0 = 6.8×1013 N-m (Mw 3.2), H = 0.7 km, and the likely fault plane characterized by φ = 2700, δ = 760, λ = -750. These source characteristics are very similar to those estimated for the 17 July 2019 earthquake which occurred during a swarm-like seismic activity about 5 km to the north. Spectral analysis of recordings at 19 sites in the hill zone, 14 in the transition zone, and 41 in the lake-bed zone reveals great variability of the ground motion within each of the zones. Estimated stress drop, Δσ, is 0.5 MPa. A large disparity is found between the observed source spectrum and theoretical source spectrum; their ratio provides an estimation of the amplification of seismic waves as they travel through the layers of decreasing velocity at shallower depth. We denote this ratio as the site effect. Predicted PGA and PGV for an Mw 3.2 earthquake, computed using stochastic technique (Boore 1983, 2003), assuming a Brune ω-2 source, Δσ = 0.5 MPa and including the site effect, are in reasonable agreement with the observations. Expected PGA and PGV at the epicenter of a postulated Mw 5 earthquake are 0.6 g and 60 cm/s at a generic hill-zone site; the expected values are twice as large in the lake-bed zone. These predictions should, however, be taken with caution as they are based on several approximations.

Article Details

How to Cite
Quintanar, L., Krishna Singh, S., Espíndola, V. H., Iglesias, A., Bello Segura, D. I., & Arroyo, D. (2024). Mexico City Earthquake of 11 May 2023 (Mw3.2). Geofisica Internacional, 63(2), 749–762. https://doi.org/10.22201/igeof.2954436xe.2024.63.2.1757
Section
Article

References

Anderson, J. G. and S. E. Hough (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America. 74(5), 1969-1993. doi: https://doi.org/10.1785/BSSA0740051969

Arce, J. L., P. W. Layer, J. L. Macías, E. Morales-Casique, A. García-Palomo, F. J. Jiménez-Domínguez, J. Benowitz, and A. Vásquez-Serrano (2019). Geology and stratigraphy of the Mexico Basin (Mexico City), Central Trans-Mexican Volcanic Belt. Journal of Maps, 15(2), 320-332. doi: https://doi.org/10.1080/17445647.2019.1593251

Boore, D. M. (1983). Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America, 73(6A), 1865-1894. doi: https://doi.org/10.1785/BSSA07306A1865

Boore, D.M. (2003). Simulation of Ground Motion Using the Stochastic Method. Pure Applied Geophysics. 160, 635–676. doi: https://doi.org/10.1007/PL00012553

Bouchon, M. (1981). A simple method to calculate Green's functions for elastic layered media. Bulletin of the Seismological Society of America, 71(4), 959-971. doi: https://doi.org/10.1785/BSSA0710040959

Brune, J.N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997-5009. doi: https://doi.org/10.1029/JB075i026p04997

Coutant, O. (1989). Program of numerical simulation AXITRA, Tech. Rep., LGIT, Grenoble, France.

Cruz-Atienza, V. M., A. Iglesias, J. F. Pacheco, N. M. Shapiro, and S. K. Singh (2010). Crustal structure below the Valley of Mexico estimated from receiver functions. Bulletin of the Seismological Society of America, 100(6), 3304–3311. doi: https://doi.org/10.1785/0120100051

Cruz-Atienza, V.M., J. Tago, J.D. Sanabria-Gómez, E. Chaljub, V. Etienne, J. Virieux, and L. Quintanar (2016). Long duration of ground motion in the paradigmatic Valley of Mexico. Scientific Reports, 6, 38807. doi: https://doi.org/10.1038/srep38807

Ego F. and V. Ansan, (2002). Why is the Central Trans-Mexican Volcanic Belt (102°–99°W) in transtensive deformation? Tectonophysics, 359(1-2), 189-208. doi: https://doi.org/10.1016/S0040-1951(02)00511-5

Espíndola V. H., L. Quintanar, and J. M. Espíndola (2017). Crustal Structure beneath Mexico from Receiver Functions. Bulletin of the Seismological Society of America, 107(5), 2427-2442. doi: https://doi.org/10.1785/0120160152

Figueroa, J. (1971). Sismicidad en la Cuenca del Valle de México. Serie de Investigación No. 289, Universidad Nacional Autónoma de México, Instituto de Ingeniería.

Havskov J. (1982). The Earthquake Swarm of February 1981 in Mexico City. Geofísica Internacional, 21(2), 157-175. doi: https://doi.org/10.22201/igeof.00167169p.1982.21.2.909

Havskov, J. and L. Ottemöller (1999). SeisAn earthquake analysis software. Seismological Research Letters, 70(5), 532-534. doi: https://doi.org/10.1785/gssrl.70.5.532

Havskov, J. and S.K. Singh (1978). Shallow crustal structure below Mexico City. Geofísica Internacional, 17(2), 223-229. doi: https://doi.org/10.22201/igeof.00167169p.1978.17.2.935

Hernández-Aguirre, V. M., R. Paolucci, F. J. Sánchez-Sesma, and I. Mazzieri (2023). Three-dimensional numerical modeling of ground motion in the Valley of Mexico: A case study from the Mw3.2 earthquake of July 17, 2019. Earthquake Spectra, 39(4), 2323-2351. doi: https://doi.org/10.1177/87552930231192463

Johnson, C.A. and C. G. A.Harrison, C.G.A. (1990). Neotectonics in Central Mexico. Physics of the Earth and Planetary Interiors, 64(1-2), 187-210. doi: https://doi.org/10.1016/0031-9201(90)90037-X

Kagan, Y. Y. (1991). 3-D rotation of double-couple earthquake sources. Geophysical Journal International, 106(3), 709-716. doi: https://doi.org/10.1111/j.1365-246X.1991.tb06343.x

Manzanilla, L. (1986). Relación de los sismos ocurridos en la ciudad de México y sus efectos. Revista Mexicana de Sociología, 48(2), 265-282. doi: https://doi.org/10.2307/3540365

Marsal, R.J., Mazari, M. (1969). El subsuelo de la Ciudad de México. Universidad Nacional Autónoma de México, Instituto de Ingeniería.

Mooser, F. (1972). The Mexican volcanic belt structure and tectonics, Geofísica Internacional, 12(2), 55-70. doi: https://doi.org/10.22201/igeof.00167169p.1972.12.2.1024

Ordaz, M, J. Arboleda, and S.K. Singh (1995). A scheme of random summation of an empirical Green’s function to estimate ground motions from future large earthquakes. Bulletin of the Seismological Society of America, 85(6), 1635–1647. doi: https://doi.org/10.1785/BSSA0850061635

Ordaz, M. and S.K. Singh (1992). Source Spectra and Spectral Attenuation of Seismic waves from Mexican Earthquakes, and Evidence of Amplification in the hill zone of Mexico City. Bulletin of the Seismological Society of America, 82(1), 24-43. doi: https://doi.org/10.1785/BSSA0820010024

Ordaz, M., Danny Arroyo, Shri K. Singh, Luis Quintanar. (2023). Microsismos en la CDMX. Revista del Colegio de Ingenieros Civiles de México, 646, 20-23.

Pasquaré, G., L. Vezzoli and A. Zanchi (1987). Morphological and structural model of Mexican Volcanic Belt. Geofísica Internacional, 26(2), 159-176. doi: https://doi.org/10.22201/igeof.00167169p.1987.26.2.1107

Quintanar, L., A. Cárdenas-Ramírez, D. I. Bello-Segura, V. H. Espíndola, J. A. Pérez-Santana, C. Cárdenas-Monroy, A. L. Carmona-Gallegos and I. Rodríguez-Rasilla (2018). A seismic network for the Valley of Mexico: present status and perspectives. Seismological Research Letters, 89(2A), 356-362. doi: https://doi.org/10.1785/0220170198

Reinoso, E., M. Ordaz (1999). Spectral ratios for Mexico City from free-field recordings. Earthquake Spectra, 15(2), 273-295. doi: https://doi.org/10.1193/1.1586041

Singh S.K., R. Quaas, M. Ordaz, F. Mooser, D. Almora, M. Torres, and R. Vásquez (1995). Is there truly a "hard" rock site in the Valley of Mexico? Geophysical Research Letters, 22(4), 481-484. doi: https://doi.org/10.1029/94GL03298

Singh, S. K., E. Mena, and R. Castro (1988a). Some aspects of source characteristics of 19 September 1985 Michoacan earthquake and ground motion amplification in and near Mexico City from the strong motion data. Bulletin of the Seismological Society of America, 78(2), 451-477. doi: https://doi.org/10.1785/BSSA0780020451

Singh, S. K., J. G. Anderson, and M. Rodríguez (1998). Triggered seismicity in the Valley of Mexico from major Mexican earthquakes. Geofísica Internacional, 37(1), 3-15. doi: https://doi.org/10.22201/igeof.00167169p.1998.37.1.2155

Singh, S. K., J. Lermo, T. Domínguez, M. Ordaz, J.M. Espinosa, E. Mena, and R. Quaas (1988b). The Mexico Earthquake of September 19, 1985-A study of amplification of seismic waves in the Valley of Mexico with respect to a hill zone site. Earthquake Spectra, 4(4), 653-673. doi: https://doi.org/10.1193/1.1585496

Singh, S. K., L. Quintanar-Robles, D. Arroyo, V. M. Cruz-Atienza, V. H. Espíndola, D. I. Bello-Segura, and M. Ordaz (2020). Lessons from a small local earthquake (Mw 3.2) that produced the highest acceleration ever recorded in Mexico City. Seismological Research Letters, 91(6), 3391–3406. doi: https://doi.org/10.1785/0220200123

Singh, S. K., R. Apsel, J. Fried, and J. N. Brune (1982). Spectral attenuation of SH waves along the Imperial fault. Bulletin of the Seismological Society of America, 72(6A), 2003-2016. doi: https://doi.org/10.1785/BSSA07206A2003

Sokos, E. and J. Zahradnik (2008). ISOLA-A Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Computers & Geosciences, 34(8), 967-977. doi: https://doi.org/10.1016/j.cageo.2007.07.005

Sokos, E. and J. Zahradnik (2013). Evaluating Centroid‐Moment‐Tensor uncertainty in the new version of ISOLA software. Seismological Research Letters, 84(4), 656-665. doi: https://doi.org/10.1785/0220130002

Suárez, G., G.V. Caballero-Jiménez, D.A. Novelo-Casanova (2019). Active crustal deformation in the Trans‐Mexican Volcanic Belt as evidenced by historical earthquakes during the last 450 years. Tectonics, 38(10), 3544-3562. doi: https://doi.org/10.1029/2019TC005601

Suter, M., O. Quintero, and C. Johnson (1992). Active faults and state of stress in the central part of the Trans-Mexican Volcanic Belt. 1. The Venta de Bravo fault. Journal of Geophysical Research, 97(B8), 11983-11993. doi: https://doi.org/10.1029/91JB00428

Waldhauser, F. and W.L. Ellsworth (2000). A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. doi: https://doi.org/10.1785/0120000006

Wells, D.L. and K. J. Coppersmith (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. doi: https://doi.org/10.1785/BSSA0840040974

Most read articles by the same author(s)

1 2 > >>