Evolución volcánica del maar Joya de Los Contreras, San Luis Potosí México, a partir de estratigrafía y análisis de facies

Main Article Content

Gastón Venegas Rodríguez
Pablo Dávila Harris
Vsevolod Yutsis
Ricardo Saucedo Girón

Abstract




The Joya de Los Contreras is one of four phreatomagmatic structures in the Santo Domingo Volcanic Field, a Pleistocene intraplate monogenetic field related to extensional faulting and cortical thinning, located north of San Luis Potosí state (Mexico). Previous publications include mainly geochemical and petrological studies on its lavas and abundant lower-crust xenoliths but lack a description of the volcanic evolution in detail. The Joya de Los Contreras is an elliptical crater excavated in upper Cretaceous limes- tone terrain (El Abra Formation), nearly 1,160 m in diameter and 210 m deep. It exposes mafic lavas at the base (basanites), a well-preserved tuff ring with good exposures, and also mafic lavas at the top of the sequence. To better know the volcanic processes that originated it, we performed stratigraphic logs, facies analysis, petrography, granulometry, componentry, and geochemistry. Resulting in the following sequence: 1) Pre-maar units, mafic and basanite lavas at the base; 2) Maar forming units, tuffs forming the crater ring; and 3) Post-maar units, mafic lavas at the top of the sequence. One of these lavas was dated at 447 + 11 ka (40Ar/39Ar). Although there is no direct evidence of the existence of a diatreme, we infer the presence of a diatreme based on some geomorphological diagnostic criteria, like the high volume of limestone lithics in the tuff ring (excavation and re-filled - recycling), the aspect ratio of the crater and the crater fill.




Article Details

How to Cite
Venegas Rodríguez, G., Dávila Harris, P., Yutsis, V., & Saucedo Girón, R. (2024). Evolución volcánica del maar Joya de Los Contreras, San Luis Potosí México, a partir de estratigrafía y análisis de facies. Geofisica Internacional, 63(3), 1111–1146. https://doi.org/10.22201/igeof.2954436xe.2024.63.3.1761
Section
Special section

References

Almaguer-Rodríguez J., Guevara-Betancourt R., Sieck P., Aguillón-Robles A., López-Loera H., Cerca-Ruiz M. F. and Tristán-González M. (2023). An integrated geophysical and geological 3D model to characterize the feeder system of La Joya Honda and La Joyuela maars complex in central México. Journal of South American Earth Sciences 125, 104254. doi: https://doi.org/10.1016/j.jsames.2023.104254 DOI: https://doi.org/10.1016/j.jsames.2023.104254

Aranda-Gómez J. J. and Dávila-Harris P. (2014). Maars Associated with fracture- and/or conduit-controlled aquifers in folded limestone in San Luis Potosí, México. Pre-conference Field Trip, 5th International Maar Conference, Queretaro, México. Centro de Geociencias, Universidad Nacional Autónoma de México. https://theghub.org/resources/3710/download/SLP-FieldTrip-5IMC.pdf

Aranda-Gómez J. J., Henry C. D., and Luhr J. F. (2000). Evolución tectonomagmática post-paleocénica de la Sierra Madre Occidental y de la porción meridional de la provincia tectónica de Cuencas y Sierras, México. Boletín de la Sociedad Geológica Mexicana, 53(1), 59-71. doi: http://dx.doi.org/10.18268/BSGM2000v53n1a3 DOI: https://doi.org/10.18268/BSGM2000v53n1a3

Aranda-Gómez J. J., Luhr J. F. and Pier, J. G. (1993). Geología de los volcanes cuaternarios portadores de xenolitos del manto y de la base de la corteza en el Estado de San Luis Potosí, México. Boletín del Instituto de Geología, Universidad Nacional Autónoma de México, 106, 1-22.

Aranda-Gómez J.J. and Luhr J.F. (1996). Origin of the Joya Honda maar, San Luis Potosí, México. Journal of Volcanology and Geothermal Research, 74(1-2), 1-18. doi: https://doi.org/10.1016/S0377-0273(96)00044-3 DOI: https://doi.org/10.1016/S0377-0273(96)00044-3

Aranda-Gómez J.J., Luhr J.F., Housh T.B., Valdez-Moreno G. and Chávez-Cabello G. (2005b). El volcanismo tipo intraplaca del Cenozoico tardío en el centro y norte de México: una revisión. Boletín de la Sociedad Geológica Mexicana, 57(3), 187-225. doi: https://doi.org/10.18268/bsgm2005v57n3a1 DOI: https://doi.org/10.18268/BSGM2005v57n3a1

Aranda-Gómez, J. J., Housh, T. B., Luhr, J. F., Henry, C. D., Becker, T. and Chávez-Cabello, G. (2005a). Reactivation of the San Marcos fault during mid- to late Tertiary extension, Chihuahua, México. In Nourse, J. A., Anderson, T. H., McKee, J. W., Steiner, M. B. (Eds.), The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives (509-522 pp.). Geological Society of America. doi: https://doi.org/10.1130/0-8137-2393-0.509 DOI: https://doi.org/10.1130/0-8137-2393-0.509

Barboza-Gudiño J. R. (2002). Carta Geológico-Minera Villa Hidalgo, F14-A74. [Carta Geológica]. 1: 50000. San Luis Potosí. Secretaría de Economía, Consejo de Recursos Minerales. Universidad Autónoma de San Luis Potosí, Instituto de Geología.

Barboza-Gudiño J. R., Molina-Garza R. S. and Lawton T. F. (2012). Sierra de Catorce: Remnants of the ancient western equatorial margin of Pangea in central México. In Aranda-Gómez J. J., Tolson G. and Molina-Garza R. S. (Eds.), The Southern Cordillera and Beyond Geological Society of America, doi: https://doi.org/10.1130/2012.0025(01) DOI: https://doi.org/10.1130/2012.0025(01)

Basáñez-Loyola M. A., Fernandez-Turner R., and Rosales-Dominguez C. (1993). Cretaceous Platform of Valles-San Luis Potosi, Northeastern Central Mexico. In J. A. Toni Simo; Robert W. Scott; Jean-Pierre Masse, Cretaceous Carbonate Platforms (p. 51) American Association of Petroleum Geologists. DOI: https://doi.org/10.1306/M56578C5

Blott S. J. (2010). Gradistat Ver. 8.0. A grain size distribution and statistics package for the analysis of unconsolidated sediments by sieving or laser granulometer. (Ver. 8.0). Kenneth Pye Associates Ltd. Crowthorne Enterprise Centre Old Wokingham Road, Crowthorne, Berkshire RG45, 6AW, UK.

Bolós X., Barde-Cabusson S., Pedrazzi D., Martí J., Casas A., Himi M. and Lovera R. (2012). Investigation of the inner structure of La Crosa de Sant Dalmai maar (Catalan Volcanic Zone, Spain). Journal of Volcanology and Geothermal Research. 247–248, 37-48. doi: https://doi.org/10.1016/j.jvolgeores.2012.08.003 DOI: https://doi.org/10.1016/j.jvolgeores.2012.08.003

Bolós X., Oms O., Rodríguez-Salgado P., Martí J., Gómez de Soler B. and Campeny G. (2021). Eruptive evolution and 3D geological modeling of Camp dels Ninots maar-diatreme (Catalonia) through continuous intra-crater drill coring. Journal of Volcanology and Geothermal Research, 419, 107369. https://doi.org/10.1016/j.jvolgeores.2021.107369 DOI: https://doi.org/10.1016/j.jvolgeores.2021.107369

Bowers, O., Harris, P. D., Winstanley, R., Wadsworth, F. B., & Brown, R. J. (2023). Alternating Subplinian and phreatomagmatic phases during the construction of a phonolitic maar-diatreme volcano (Caldera del Rey, Tenerife, Canary Islands). Journal of Volcanology and Geothermal Research, 443, 107920. doi: https://doi.org/10.1016/j.jvolgeores.2023.107920 DOI: https://doi.org/10.1016/j.jvolgeores.2023.107920

Branney M. J. and Kokelaar B. P. (2002). Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London Memoirs. doi: https://doi.org/10.1144/GSL.MEM.2003.027 DOI: https://doi.org/10.1144/GSL.MEM.2003.027

Brenna M., Ubide T., Nichols A. R. L., Mollo S. and Pontesilli A. (2021). Anatomy of Intraplate Monogenetic Alkaline Basaltic Magmatism: Clues From Magma, Crystals, and Glass. In C.C. Matteo Masotta, Christoph Beier, and Silvio Mollo (Ed.), Crustal Magmatic System Evolution: Anatomy, Architecture, and Physico-Chemical Processes (pp. 79-103). Geophysical Monograph Series. doi: https://doi.org/10.1002/9781119564485.ch4 DOI: https://doi.org/10.1002/9781119564485.ch4

Brown R., Branney M., Maher C. and Dávila-Harris P. (2010). Origin of accretionary lapilli within ground-hugging density currents: evidence from pyroclastic couplets on Tenerife. GSA Bulletin, 122(1–2), 305–320. doi: https://doi.org/10.1130/B26449.1 DOI: https://doi.org/10.1130/B26449.1

Büttner R., Dellino P. & Zimanowski B. (1999). Identifying magma–water interaction from the surface features of ash particles. Nature, 401, 688-690. doi: https://doi.org/10.1038/44364 DOI: https://doi.org/10.1038/44364

Büttner, R., Dellino, P., Volpe, L. L., Lorenz, V., & Zimanowski, B. (2002). Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments. Journal of Geophysical Research: Solid Earth, 107(B11), ECV5-1-ECV5-14. doi: https://doi.org/10.1029/2001JB000511 DOI: https://doi.org/10.1029/2001JB000511

Carrasco B. (1970), La Formación El Abra (formación El Doctor) en la Plataforma Valles-San Luis Potosí. Revista del Instituto Mexicano del Petróleo, 2(3), 97–99.

Carrasco-Núñez, G., Ort, M. and Romero, C. (2007). Evolution and hydrological conditions of a maar volcano (Atexcac crater, Eastern Mexico). Journal of Volcanology and Geothermal Research, 1598(1-3), 179-197. Doi: https://doi.org/10.1016/j.jvolgeores.2006.07.001 DOI: https://doi.org/10.1016/j.jvolgeores.2006.07.001

Carrillo-Bravo J. (1971). La Plataforma Valles-San Luis Potosí. Boletín de la Sociedad Mexicana de Geólogos Petroleros, pp. 21-46.

Cas R. A. F. & Wright J. V., 1987. Volcanic Succession: Modern and Anvient. A Geological Approach to Processes. Products and Successions. Chapman & Hall. doi: https://doi.org/10.1007/978-94-009-3167-1 DOI: https://doi.org/10.1007/978-94-009-3167-1

Chako Tchamabé B., Ohba T, Kereszturi G., Németh K., Aka F. T., Youmen D., Issa, Miyabuchi Y, Ooki S., Tanyileke G. and Hell J. V. (2015). Towards the reconstruction of the shallow plumbing system of the Barombi Mbo Maar (Cameroon) Implications for diatreme growth processes of a polygenetic maar volcano. Journal of Volcanology and Geothermal Research, 301, 293-313. doi: https://doi.org/10.1016/j.jvolgeores.2015.06.004 DOI: https://doi.org/10.1016/j.jvolgeores.2015.06.004

Chako Tchamabe B., Youmen D., Owona S., Issa Ohba T., Nemeth K., Ngapna M.N., Asaah A.N.E., Aka F.T., Tanyileke G. and Hell, J.V. (2013). Eruptive history of the Barombi Mbo Maar, Cameroon Volcanic Line, Central Africa: Constrains from Volcanic Facies Analysis. Central European. Journal of Geosciences, 5(4), 480-496. doi: http://dx.doi.org/10.2478/s13533-012-0147-2 DOI: https://doi.org/10.2478/s13533-012-0147-2

Chako-Tchamabé B., Carrasco-Núñez G., Dedzo M. G., Kshirsagar P. and Asaah A. N. E. (2020). Geochemical characterization of Alchichica maar volcano, Serdán-oriental Basin, eastern Trans-Mexican Volcanic Belt: Insights on polymagmatic evolution at monogenetic volcanic clusters. Journal of South American Earth Sciences, 104. 102889. doi: https://doi.org/10.1016/j.jsames.2020.102889 DOI: https://doi.org/10.1016/j.jsames.2020.102889

Clague D. A. & Frey F. A. (1982). Petrology and trace element geochemistry of the Honolulu Volcanics, Oahu: implications for the oceanic mantle below Hawaii. Journal of Petrology, 23(3), 447-504, doi: https://doi.org/10.1093/petrology/23.3.447 DOI: https://doi.org/10.1093/petrology/23.3.447

Dávalos-Elizondo M. G., Aranda-Gómez J. J., Levresse G. y de La Cruz Cervantes, K. E. (2016). Química mineral y geoquímica de xenolitos del manto del campo volcánico Santo Domingo, San Luis Potosí: Evidencias de procesos metasomáticos del manto bajo porciones de la Mesa Central, México. Revista Mexicana de Ciencias Geológicas, 33(1), 81-104.

Dávila-Harris P., Aranda-Gómez J. J. and Carrasco-Núñez G. (2013). Hydrovolcanic evolution of the Joya Prieta maar, San Luis Potosí, northeast México. [Conference]. American Geophysical Union Meeting of the Americas, Mayo 2013. Cancún, México. https://ui.adsabs.harvard.edu/abs/2013AGUSM.V43A..01D/abstract

Dávila-Harris P., Branney M. J., Storey M., Taylor R. N. and Sliwinski J. T. (2023). The Upper Pleistocene (1.8-0.7 Ma) explosive eruptive history of Las Cañadas volcano, Tenerife. Journal of Volcanology and Geothermal Research, 436, 107777. doi: https://doi.org/10.1016/j.jvolgeores.2023.107777 DOI: https://doi.org/10.1016/j.jvolgeores.2023.107777

Del Razo-González A. and Yutsis V. (2023). Robust 3D joint inversion of gravity and magnetic data: A high-performance computing approach. Applied Sciences, 13(20), 11292. doi: https://doi.org/10.3390/app132011292 DOI: https://doi.org/10.3390/app132011292

Dellino P. & La Volpe. (1996). Image processing analysis in reconstructing fragmentation and transportation mechanisms of pyroclastic deposits. The case of Monte Pilato-Rocche Rosse eruptions, Lipari (Aeolian islands, Italy). Journal of Volcanology and Geothermal Research, 71(1), 13-29. doi: https://doi.org/10.1016/0377-0273(95)00062-3 DOI: https://doi.org/10.1016/0377-0273(95)00062-3

Dellino P., Isaia R., and Veneruso M. (2004). Turbulent boundary layer shear flow s as an approximation of base surges at Campi Flegrei (Southern Italy). Journal of Volcanology and Geothermal Research, 133(1-4), 211–228. doi: https://doi.org/10.1016/S0377-0273(03)00399-8 DOI: https://doi.org/10.1016/S0377-0273(03)00399-8

Ersoy O., Gourgaud A., Aydar E., Chinga G. and Thouret J. C. (2007). Quantitative scanning-electron microscope analysis of volcanic ash surfaces: Application to the 1982-1983 Galunggung eruption (Indonesia). Geological Society of America Bulletin, 119(5-6), 743-752. doi: https://doi.org/10.1130/B26048.1 DOI: https://doi.org/10.1130/B26048.1

Folk R. L. and Ward W. C. (1957). Brazos River bar [Texas]; a Study in the significance of grain-size parameters. Journal of Sedimentary Petrology, 27(1), 3-26. doi: https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D DOI: https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

Freda C., Gaeta M., Karner D.B., Marra F. Renne P. R., Taddeucci J., Scarlato P, Christensen J. N. & Dallai L. (2006). Eruptive history and petrologic evolution of the Albano multiple maar (Alban Hills, Central Italy). Bulletin of Volcanology, 68, 567–591. doi: https://doi.org/10.1007/s00445-005-0033-6 DOI: https://doi.org/10.1007/s00445-005-0033-6

Gençalioğlu-Kuşcu G., Atilla C., Cas R. A. F. and Kuşcu I. (2007). Base surge deposits, eruption history, and depositional processes of a wet phreatomagmatic volcano in Central Anatolia (Cora Maar). Journal of Volcanology and Geothermal Research, 159(1-3), 198–209. doi: https://doi.org/10.1016/j.jvolgeores.2006.06.013 DOI: https://doi.org/10.1016/j.jvolgeores.2006.06.013

Graettinger A.H. and Valentine G.A. (2017). Evidence for the relative depths and energies of phreatomagmatic explosions recorded in tephra rings. Bulletin of Volcanology, 79(88), P.21. doi: https://doi.org/10.1007/s00445-017-1177-x DOI: https://doi.org/10.1007/s00445-017-1177-x

Graettinger A.H., Valentine G.A., Sonder I., Ross P.S., White J.D.L. and Taddeucci J. (2014). Maar-diatreme geometry and deposits: subsurface blast experiments with variable explosion depth. Geochem. Geophys. Geosyst, 15(3), 740–764. doi: https://doi.org/10.1002/2013GC005198 DOI: https://doi.org/10.1002/2013GC005198

Instituto Nacional de Estadística, Geografía e Informática, INEGI (2002). Síntesis de información geográfica del estado de San Luis Potosí. https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/historicos/2104/702825224240/702825224240_2.pdf

Jackson M., Deocampo D., Marra F., and Scheetz B. (2010). Mid-Pleistocene pozzolanic volcanic ash in ancient Roman concretes. Geoarchaeology, 25(1), 36-74. doi: https://doi.org/10.1002/gea.20295 DOI: https://doi.org/10.1002/gea.20295

Jackson M., Vola G., Všianský D., Oleson J. P., Scheetz B. E., Brandon C., and Hohlfelder R. L. (2012). Cement microstructures and durability in ancient Roman seawater concretes [Presentación de paper] Historic Mortars Springer Netherlands. doi: https://doi.org/10.1007/978-94-007-4635-0_5 DOI: https://doi.org/10.1007/978-94-007-4635-0_5

Kereszturi G. and Nemeth K. (2012). Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Nemeth K. (ed.), Updates in Volcanology–New Advances in Understanding Volcanic Systems. (pp.3–88). InTech Open. doi: https://doi.org/10.5772/51387 DOI: https://doi.org/10.5772/51387

Krumbein W. C. and Pettijohn F. J. (1938). Manual of Sedimentary Petrography. Appleton Century Crofts, New York.

Kuiper K. F., Deino A., Hilgen F. J., Krijgsman W., Renn P. R. and Wijbrans J.R. (2008). Synchronizing Rock Clocks of Earth History. Science, 320(5875), 500-504. doi: https://doi.org/10.1126/science.1154339 DOI: https://doi.org/10.1126/science.1154339

Kurszlaukis, S. and Fulop, A. (2013). Factors controlling the internal facies architecture of maar-diatreme volcanoes. Bulletin of Volcanology, 75, 761. doi: http://doi.org/10.1007/s00445-013-0761-y DOI: https://doi.org/10.1007/s00445-013-0761-y

Labarthe-Hernández, G. (1978). Algunos xalapascos en el estado de San Luis Potosí: Folleto Técnico del Instituto de Geología y Metalurgia, Universidad Autónoma de San Luis Potosí, 58, 17.

Le Bas M. J., Le Maitre R. W., Streckeisen A. and Zanettin B. (1986). A chemical classification of volcanic rocks based on the total alkali–silica diagram. Journal of Petrology, 27(3), 745–750. doi: https://doi.org/10.1093/petrology/27.3.745 DOI: https://doi.org/10.1093/petrology/27.3.745

López-Doncel R. (2003), La Formación Tamabra del Cretácico medio en la porción central del margen occidental de la Plataforma Valles-San Luis Potosí, centro-noreste de México. Revista Mexicana de Ciencias Geológicas, 20(1), 1-19. https://transboundary.tamu.edu/media/1383/lopez_2003.pdf

López-Loera H., Aranda-Gómez J. J., Arzate J. A. and Molina-Garza R. S. (2008). Geophysical surveys of The Joya Honda maar (México) and surroundings; volcanic implications. Journal of Volcanology and Geothermal Research. 170 (3-4), 135-152. doi: http://doi.org/10.1016/j.jvolgeores.2007.08.021 DOI: https://doi.org/10.1016/j.jvolgeores.2007.08.021

López-Rojas M. and Carrasco-Núñez G. (2015). Depositional facies and migration of the eruptive loci for Atexcac axalapazco (Central Mexico): implications for the morphology of the crater. Revista Mexicana de Ciencias Geológicas, 32(3), 377–394. doi: https://doi.org/10.22201/cgeo.20072902e.2015.3.590

Lorenz V. (1973). On the formation of Maars. Bulletin of Volcanology, 37,183-204. doi: https://doi.org/10.1007/BF02597130 DOI: https://doi.org/10.1007/BF02597130

Lorenz V. and Kurszlaukis S. (2007). Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. Journal of Volcanology and Geothermal Research, 159(1-3), 4-32. doi: https://doi.org/10.1016/j.jvolgeores.2006.06.019 DOI: https://doi.org/10.1016/j.jvolgeores.2006.06.019

Lorenz, V. (1987). Phreatomagmatism and its relevance. Chemical Geology, 62(1-2), 149-156. doi: https://doi.org/10.1016/0009-2541(87)90066-0 DOI: https://doi.org/10.1016/0009-2541(87)90066-0

Luhr J. F., Aranda-Gómez J. J. and Pier J. G. (1989). Spinel-lherzolite-bearing, Quaternary volcanic centers in San Luis Potosí, México. I. Geology, Mineralogy and Petrology. Journal of Geophysical Research, 94(B6), 7916-7940. DOI: https://doi.org/10.1029/JB094iB06p07916

Macorps E., Graettinger A.H., Valentine G.A., Ross P.S., White J.D.L. and Sonder I. (2016). The effects of the host-substrate properties on maar-diatreme volcanoes: experimental evidence. Bulletin of Volcanology, 78, 26. doi: http://doi.org/10.1007/s00445-016-1013-8 DOI: https://doi.org/10.1007/s00445-016-1013-8

Martí J., Planagumà L.L., Geyer A., Aguirre-Díaz G., Pedrazzi D. and Bolós, X. (2017). Basaltic ignimbrites in monogenetic volcanism: the example of La Garrotxa volcanic field. Bulletin of Volcanology, 79, 33. doi: https://doi.org/10.1007/s00445-017-11130 DOI: https://doi.org/10.1007/s00445-017-1113-0

Martí J., Soriano C., and Dingwell D. B. (1999). Tube pumices as strain markers of the ductile brittle-transition during magma fragmentation. Nature, 402, 650–653. doi: https://doi.org/10.1038/45219 DOI: https://doi.org/10.1038/45219

McDonough W. F. and Sun S. S. (1995). The composition of the Earth. Chemical Geology, 120(3-4), 223–253. doi: https://doi.org/10.1016/0009-2541(94)00140-4 DOI: https://doi.org/10.1016/0009-2541(94)00140-4

Möri A., Mazeruk M and Hu Q. (2007). In situ experiments on matrix diffusion in fractured crystalline rock. 12th International Symposium on Water-Rock Interaction, WRI-12, 1, 357 DOI: https://doi.org/10.1201/NOE0415451369.ch74

Mota-Gómez J., 2020. Modelación geológica-geofísica de la zona volcánica La Pólvora, San Luis Potosí. [Tesis de Maestría inédita]. Instituto Potosino de Investigación Científica y Tecnológica (IPICYT).

Mountaj S., Mhiyaoui H., Remmal T., Makhoukhi S. and El-Kamel F. (2020). Study of Monogenic Volcanism in a Karstic System: Case of the Maar of Lechmine n’Aït el Haj (Middle Atlas Morocco) In Updates in Volcanology–Transdisciplinary Nature of Volcano Science. doi: http://dx.doi.org/10.5772/intechopen.94756 DOI: https://doi.org/10.5772/intechopen.94756

Murcia H. F., Borrero C. A., Pardo N., Alvarado G. E., Arnosio M. and Scolamacchia T. (2013). Depósitos volcaniclásticos: Términos y conceptos para una clasificación en español. Revista Geológica de América Central, 48, 15-39.

Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et cosmochimica acta, 38(5), 757-775. doi: https://doi.org/10.1016/0016-7037(74)90149-5 DOI: https://doi.org/10.1016/0016-7037(74)90149-5

Németh K. & Kereszturi G. (2015). Monogenetic volcanism: personal views and discussion. International Journal of Earth Sciences, 104, 2131–2146. doi: https://doi.org/10.1007/s00531-015-1243-6 DOI: https://doi.org/10.1007/s00531-015-1243-6

Németh K. & White J.D.L. (2003). Reconstructing Eruption Processes of a Miocene Monogenetic Volcanic Field from Vent Remnants: Waipiata Volcanic Field, South Island, New Zealand. Journal of Volcanology and Geothermal Research, 124(1-2), 1-21. doi: https://doi.org/10.1016/S0377-0273(03)00042-8 DOI: https://doi.org/10.1016/S0377-0273(03)00042-8

Németh K. (2003). Calculation of long-term erosion in Central Otago, New Zealand, based on erosional remnants of maar/tuff rings. Zeitschrift für Geomorphologie 47(1), 29–49. Doi: https://doi.org/10.1127/zfg/47/2003/29 DOI: https://doi.org/10.1127/zfg/47/2003/29

Németh K. (2010). Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. In C.C. Cañón-Tapia, E., Szakács, A. (Eds.), What Is a Volcano? (pp. 43–66) Geological Society of America. Doi: https://doi.org/10.1130/2010.2470(04) DOI: https://doi.org/10.1130/2010.2470(04)

Németh K., Martin U., and Harangi S. (2001). Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). Journal of Volcanology and Geothermal Research 111(1-4), 111–135. doi: https://doi.org/10.1016/S0377-0273(01)00223-2 DOI: https://doi.org/10.1016/S0377-0273(01)00223-2

Nurfiani D. and Bouvet de Maisonneuve C. (2018). Furthering the investigation of eruption styles through quantitative shape analyses of volcanic ash particles. Journal of Volcanology and Geothermal Research, 354, 102-114. doi: https://doi.org/10.1016/j.jvolgeores.2017.12.001 DOI: https://doi.org/10.1016/j.jvolgeores.2017.12.001

Pardo N., Macias J. L., Giordano G., Cianfarra P., Avellán D. R. and Bellatreccia F. (2009). The ∼1245yr BP Asososca maar eruption: The youngest event along the Nejapa–Miraflores volcanic fault, Western Managua, Nicaragua. Journal of Volcanology and Geothermal Research 184, 292–312. doi: doi:10.1016/j.jvolgeores.2009.04.006 DOI: https://doi.org/10.1016/j.jvolgeores.2009.04.006

Pearce J. A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In C.C. Thorpe, R.S. (Ed), Orogenic andesites and related rocks, Chichester, England (pp. 528-548). John Wiley and Sons.

Peredo C. R., Yutsis V., Martin A. J. and Aranda-Gómez J. A. (2021). Crustal structure and Curie point depth in central Mexico inferred from the spectral analysis and forward modeling of potential field data. Journal of South American Earth Sciences, 112(103565). doi: https://doi.org/10.1016/j.jsames.2021.103565 DOI: https://doi.org/10.1016/j.jsames.2021.103565

Planagumà L., Bolós X. & Martí J. (2023). Hydrogeologic and magma controls on phreatomagmatism at the La Garrotxa monogenetic volcanic field (NE of Iberian Peninsula). Journal of Volcanology and Geothermal Research, 441(107894). doi: https://doi.org/10.1016/j.jvolgeores.2023.107894 DOI: https://doi.org/10.1016/j.jvolgeores.2023.107894

Ross P.S., White J.D.L., Valentine G.A., Taddeucci J., Sonder I. and Andrews R. (2013). Experimental birth of a maar-diatreme volcano. Journal of Volcanology and Geothermal Research, 260, 1-12, doi: https://doi.org/10.1016/j.jvolgeores.2013.05.005 DOI: https://doi.org/10.1016/j.jvolgeores.2013.05.005

Saucedo R., Macías J.L., Ocampo-Díaz Y.Z.E., Gómez-Villa W., Rivera-Olguín E., Castro-Govea R., Sánchez-Núñez J.M., Layer P.W., Torres Hernández J.R. and Carrasco-Núñez G. (2017). Mixed magmatic – phreatomagmatic explosions during the formation of the Joya Honda maar, San Luis Potosí, Mexico. Geological Society London, Special Publications, 446, 255–279. doi: https://doi.org/10.1144/SP446.11 DOI: https://doi.org/10.1144/SP446.11

Schumacher J. G. and Peck D. L. (1962). Accretionary lapilli in volcanic rocks of the western continental United States: The Journal of Geology, 70(2), 182-194. DOI: https://doi.org/10.1086/626807

Schumacher R. and Schmincke, H. U. (1995), Models for the origin of accretionary lapilli: Bulletin of Volcanology, 56, 626-639. doi: https://doi.org/10.1007/BF00301467 DOI: https://doi.org/10.1007/s004450050069

Seymour L. M., Maragh J., Sabatini P., Di Tommaso M., Weaver J. C. and Masic A. (2023). Hot mixing: Mechanistic insights into the durability of ancient Roman concrete. Science Advances, 9, 1602. doi: https://doi.org/10.1126/sciadv.add1602 DOI: https://doi.org/10.1126/sciadv.add1602

Shaw C. S. J., Eyzaguirre J., Fryer B. and Gagnon J. (2005). Regional variations in the mineralogy of metasomatic assemblages in mantle xenoliths from the West Eifel Volcanic Field, Germany. Journal of Petrology, 46(5), 945-972. doi: http://doi.org/10.1093/petrology/egi006 DOI: https://doi.org/10.1093/petrology/egi006

Sheridan M. F. and Wohletz K. H. (1983). Origin of accretionary lapilli from the Pompeii and Avellino deposits of Vesuvius, In C.C. Gooley, R., (Eds.), Microbeam Analysis. (pp. 35–38). San Francisco Press.

Sonder I., Harp A., Graettinger A. H., Moitra P., Valentine G. A., Büttner R. and Zimanowski, B. (2018). Meter-scale experiments on magma-water interaction. Journal of Geophysical Research: Solid Earth, 123(12), 10597–10615. doi: https://doi.org/10.1029/2018JB015682 DOI: https://doi.org/10.1029/2018JB015682

Suter M. (1987). Structural traverse across the Sierra Madre Oriental fold-thrust belt in east-central Mexico. Geological Society of American Bulletin, 98(3), 249-264. doi: https://doi.org/10.1130/0016-7606(1987)98<249:STATSM>2.0.CO;2 DOI: https://doi.org/10.1130/0016-7606(1987)98<249:STATSM>2.0.CO;2

Sweeney M. R., Grosso Z. S. and Valentine G. A. (2018). Topographic controls on a phreatomagmatic maar-diatreme eruption: field and numerical results from the Holocene Dotsero volcano (Colorado, USA). Bulletin of Volcanology, 80(78). doi: https://doi.org/10.1007/s00445-018-1253-x DOI: https://doi.org/10.1007/s00445-018-1253-x

Tristán-González M., Aguirre-Díaz G.J., Labarthe-Hernández G., Torres-Hernández J. R. and Bellon H. (2009). Post-Laramide and pre-Basin and Range deformation and implications for Paleogene (55–25 Ma) volcanism in central Mexico: a geological basis for a volcano-tectonic stress model. Tectonophysics, 471, 136–152. doi: https://doi.org/10.1016/j.tecto.2008.12.021 DOI: https://doi.org/10.1016/j.tecto.2008.12.021

Tristán-González M., Labarthe-Hernández G., Aguirre-Díaz G. J. and Aguillón-Robles A. (2008). Tectono-volcanic control of fissure type vents for the 28 Ma panalillo ignimbrite in the Villa de Reyes graben, san Luis Potosí, México. IOP Conference Series: Earth and Environmental Science, 3, 12026. doi: https://doi.org/10.1088/1755-1307/3/1/012026 DOI: https://doi.org/10.1088/1755-1307/3/1/012026

Valentine G.A. (2012). Shallow plumbing systems for small-volume basaltic volcanoes, 2: evidence from crustal xenoliths at scoria cones and maars. Journal of Volcanology and Geothermal Research, 223-224, 47-63. doi: https://doi.org/10.1016/j.jvolgeores.2012.01.012 DOI: https://doi.org/10.1016/j.jvolgeores.2012.01.012

Valentine G.A., White J.D.L., Ross P.S., Graettinger A.H. and Sonder I. (2017). Updates to Concepts on Phreatomagmatic Maar-Diatremes and Their Pyroclastic Deposits. Frontiers in Earth Science, 5(68). doi: https://doi.org/10.3389/feart.2017.00068 DOI: https://doi.org/10.3389/feart.2017.00068

Verma S. P. & Verma S. K. (2018). Petrogenetic and tectonic implications of major and trace element and radiogenic isotope geochemistry of Pliocene to Holocene rocks from the Tacaná Volcanic Complex and Chiapanecan Volcanic Belt, southern Mexico. Lithos, 312-313, 274-289. doi: https://doi.org/10.1016/j.lithos.2018.05.016 DOI: https://doi.org/10.1016/j.lithos.2018.05.016

Walker G. P. L. (1971). Grain size characteristics of pyroclastics flows. Journal of Geology, 79(6), 696-714. DOI: https://doi.org/10.1086/627699

Walton A. W. and Schiffman P. (2003). Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core 494 1. Description and paragenesis. Geochemistry, Geophysics, Geosystems, 4(5). DOI: https://doi.org/10.1029/2002GC000368

White J. D. L. and Houghton B. (2000). Surtseyan and related phreatomagmatic eruptions. In C.C. Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes (pp. 495–511). Academic Press, London.

White J. D. L. and Ross P. S. (2011). Maar-diatreme volcanoes: a review. Journal of Volcanology and Geothermal Research. 201(1-4), 1-29. doi: https://doi.org/10.1016/j.jvolgeores.2011.01.010 DOI: https://doi.org/10.1016/j.jvolgeores.2011.01.010

White J. D. L. and Valentine G.A. (2016). Magmatic vs phreatomagmatic fragmentation: absence of evidence is not evidence of absence. Geosphere. doi: https://doi.org/10.1130/GES01337.1 DOI: https://doi.org/10.1130/GES01337.1

White J.D.L. (1996). Impure coolants and interaction dynamics of phreatomagmatic eruptions. Journal of Volcanology and Geothermal Research, 74, 155–170. doi: https://doi.org/10.1016/S0377-0273(96) 00061-3 DOI: https://doi.org/10.1016/S0377-0273(96)00061-3

Wohletz K. and Krinsley D. (1982). Scanning electron microscopy of basaltic hydromagmatic ash. Los Alamos National Laboratory Report, LA-UR 82-1433.

Wohletz K. H. (1983). Mechanisms of hydrovolcanic pyroclast formation: Grain-size, scanning electron microscopy, and experimental studies. 33. Journal of Volcanology and Geothermal Research, 17, 31-63. doi: https://doi.org/10.1016/0377-0273(83)90061-6 DOI: https://doi.org/10.1016/0377-0273(83)90061-6

Wohletz K. H. and McQueen R. G. (1984). Experimental studies of hydromagmatic volcanism, in: Explosive Volcanism; inception, evolution, and hazards. Studies in geophysics. National Academy Press, Washington, 158-169.

Wood C. A. (1980). Morphometric evolution of cinder cones. Journal of Volcanology and Geothermal Research, 7(3-4), 387-413. doi: https://doi.org/10.1016/0377-0273(80)90040-2 DOI: https://doi.org/10.1016/0377-0273(80)90040-2

Zimanowski B. (1998). Phreatomagmatic Explosions. In A. Freundt & M. Rosi (Eds.), From magma to tephra: Modelling physical processes of explosive volcanic eruptions. (pp.25-54).

Zimanowski B., Büttner R., Lorenz V. & Häfele H. G. (1997). Fragmentation of basaltic melt in the course of explosive volcanism. Journal of Geophysical Research: Solid Earth, 102(B1),803-814. doi: https://doi.org/10.1029/96JB02935 DOI: https://doi.org/10.1029/96JB02935

Zimanowski B., Lorenz V. and Frohlich G. (1986). Experiments on phreatomagmatic explosions with silicicatec and carbonatitic melts. Journal of Volcanology Geothermal Research, 30(1-2), 149-153. doi: https://doi.org/10.1016/0377-0273(86)90071-5 DOI: https://doi.org/10.1016/0377-0273(86)90071-5

Most read articles by the same author(s)