Reconstrucción del paleo-relieve del área del Volcán Xitle (Ciudad de México) y su impacto en la trayectoria de sus derrames de lava mediante simulaciones probabilísticas
Main Article Content
Abstract
Preexisting topography played a major role in defining the distribution of the Xitle lava flows. Xitle is one of the youngest monogenetic volcanoes in southern Mexico City. The eruption was characterized by small ash emissions and nine pahoehoe and aa lava flows that covered 78.94 km2. In this paper, the paleo-topography of the Xitle volcano area was reconstructed to improve knowledge of the paleo-drainage and how it determined the trajectory of the lava flows and the formation of lava tubes. Deposits of pre-Xitle volcanoes (San Miguel Volcanic Complex, Ajusco, Cuilotepec, Coatzontle, Yololica and Malinale) were identified according to the morphology of the current relief. The contour lines of the present-day relief were modified to eliminate the topography left by the Xitle lava flows. The modified contour lines were then processed creating a raster surface from a TIN to obtain the digital elevation model of the paleo-relief. The distribution of the paleo-channels was defined by analyzing the accumulation and direction of flow in the paleo-relief. Lava flows were individually simulated in the paleo-relief with the probabilistic program Q-LavHA. Field observations and previous studies were integrated to define the parameters of lava flow simulations. Lava flows from the Xitle volcano covered the deposits of the pre-Xitle volcanoes except for the highest parts, such as ones from the Cuilotepec cone and the Ajusco hummocks. The lava flows also partially filled and modified some paleo river-channels (e.g. Magdalena), and completely filled others (e.g. Cuicuilco). The simulations show that the trajectory of lava flows and the existence and distribution of lava tubes are associated with variations in the effusion rate, arrangement of the paleo river-channels, morphology of the pre-Xitle deposits and the abrupt slope.
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- Geofísica Internacional
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Arce, J.L., Muñoz-Salinas, E., Castillo, M., Salinas, I. (2015). The ~2000 yr BP Jumento volcano, one of the youngest edifices of the Chichinautzin Volcanic Field, Central México. Journal of Volcanology and Geothermal Research. 308, 30–38. doi: http://dx.doi.org/10.1016/j.jvolgeores.2015.10.008
Becerril, L., Larrea, P., Salinas, S, Mossoux, S., Ferrés, D., Widom, E., Siebe, C., Martí, J. (2021). The historical case of Paricutin volcano (Michoacán, México): challenges of simulating lava flows on a gentle slope during a long‑lasting eruption. Natural Hazards. 107:809–829. https://doi.org/10.1007/s11069-021-04607-x
Cañón Tapia, E., Walker, G. P. L., & Herrero Bervera, E. (1995). Magnetic fabric and flow direction in basaltic Pahoehoe lava of Xitle Volcano, Mexico. Journal of Volcanology and Geothermal Research. 65(3-4), 249-263. doi: https://doi.org/10.1016/0377-0273(94)00110-3
Cervantes, P., Molinero, R. (1995). Eventos volcánicos al sur de la ciudad de México. [Tesis de Licenciatura] Universidad Nacional Autónoma de México, Facultad de Ingeniería.
Cervantes, P., Wallace, P. (2003). Magma degassing and basaltic eruption styles: a case study of ~2000 year BP Xitle volcano in central Mexico. Journal of Volcanology and Geothermal Research. 120(3-4), 249-270. doi: https://doi.org/10.1016/S0377-0273(02)00401-8
Cordova C., Martin Del Pozzo A. L. and López J. (1994). Paleolandforms and Volcanic Impact on the Environment of Prehistoric Cuicuilco, Southern Mexico City. Journal of Archaeological Science. 21, 585-596.
Delgado H. and Martin Del Pozzo A.L. (1993). Pliocene to Holocene volcanic geology at the junction of Las Cruces, Chichinautzin and Ajusco ranges, southwest of Mexico City. Geofísica Internacional. 32(3), 511-522. doi: https://doi.org/10.22201/igeof.00167169p.1993.32.3.526
Delgado, H., Molinero, R., Cervantes, P., Nieto, J., Lozano, R., Macías, H.L., Mendoza, C., Silva, G. (1998). Geology of the Xitle Volcano in Southern Mexico City- a 2000 year old monogenetic volcano in an urban area. Revista Mexicana de Ciencias Geológicas. 15(2), 115-131.
Environmental Systems Research Institute (2016) ArcGIS. [Mapping Software]. Environmental Systems Research Institute. https://www.esri.com/en-us/home
Felpeto, A., Araña, V., Ortiz, R., Astiz, M., García, A. (2001). Assessment and modelling of lava flow hazard on Lanzarote (Canary Islands). Natural Hazards. 23, 247–257. doi: https://doi.org/10.1023/A:1011112330766
García-Palomo, A., Zamorano, J.J., López-Miguel, C., Galván-García, A., Carlos-Valerio, V., Ortega, R., Macías, J.L. (2008). El arreglo morfoestructural de la Sierra de Las Cruces, México central. Revista Mexicana de Ciencias Geológicas, 25(1), 158–178.
Hakim, W. L., Ramayanti, S., Park, S., Ko, B., Cheong, D. K., & Lee, C. W. (2022). Estimating the Pre-Historical volcanic eruption in the Hantangang River volcanic field: Experimental and simulation study. Remote Sensing, 14(4), 894. Doi: https://doi.org/10.3390/rs14040894
Harris, A.J.L., Rhety, M., Gurioli, L., Villenueve, N., Paris, Raphael. (2015). Simulating the thermorheological evolution of channel-contained lava: FLOWGO and its implementation in EXCEL. In A. A. J. L. Harris, T. De Groeve, F. Garel, S. A. Carn (Eds) Detecting, Modelling and Responding to Effusive Eruptions. Geological Society London Special Publications.
Hon, K., Gansecki, C., Kauahikaua, J. (2003). The transition from ‘a‘ä to Pähoehoe Crust on Flows Emplaced during the Pu‘u ‘Ö‘ö-Küpaianaha Eruption. U.S. Geological Survey professional paper, 1676, 89-104.
Hubp J.L., Inbar M., Pastrana A., Flores A. and Zamorano J.J. (2001). Interpretation of the geomorphic setting of the Cuicuilco basin, Mexico City, affected by the pre-Hispanic eruption of the Xitle volcano. Géomorphologie: relief, processus, environnement, 3, 223-232.
Jaimes M.C., Martin Del Pozzo A.L., Layer P.W., Benowitz J.A. and Nieto-Torres A. (2018). Timing the evolution of a monogenetic volcanic field: Sierra Chichinautzin, Central Mexico. Journal of Volcanology and Geothermal Research, 356, 225-242. doi: https://doi.org/10.1016/j.jvolgeores.2018.03.013
Kirianov, V.Y., Koloskov, A.B., De la Cruz, S., Martin Del Pozzo, A.L. (1990). The major stages of manifestation of recent volcanism in the Chichinautzin zone. Geological Series, USSR Academy of Sciences, 311, 432-434.
Larrea P, Salinas S, Widom E, Siebe C, Abbitt R.J.F. (2017). Compositional and volumetric development of a monogenetic lava fow feld: the historical case of Paricutin (Michoacán, Mexico). Journal of Volcanology and Geothermal Research, 348, 36–48. doi: https://doi.org/10.1016/j.jvolgeores.2017.10.016
Martí, J. (2017). Assessing Volcanic Hazard: A Review. En A. Oxford University Press (Ed.), Oxford Handbook Topics in Physical Sciences. Oxford University Press.
Martin Del Pozzo A. L., Cordova C. and Lopez J. (1997). Volcanic Impact on the Basin of Mexico during the Holocene. Quaternary International. 43-44, 181-224. ISSN: 1040-6182.
Martin Del Pozzo A.L. (1982). Monogenetic Vulcanism in Sierra Chichinautzin, Mexico. Bulletin of Volcanology. 45-1. doi: https://doi.org/10.1016/S1040-6182(97)00034-7
Martin Del Pozzo, A.L. (1990). Geoquímica y paleomagnetismo de la Sierra Chichinautzin. [Tesis de Doctorado]. Universidad Nacional Autónoma de México
Martín-Raya, N., Díaz-Pacheco, J., López-Díez, A. (2023). A lava flow simulation experience oriented to disaster risk reduction, early warning systems and response during the 2021 volcanic eruption in Cumbre Vieja, La Palma. Natural Hazards, 117, 3331–3351. doi: https://doi.org/10.1007/s11069-023-05989-w
Mora G., Caballero C., Urrutia J. and Uchiumi S. (1991). Southward migration of volcanic activity in the Sierra de Las Cruces, basin of Mexico? - A preliminary K-Ar dating and palaeomagnetic study. Geofísica Internacional, 30(2), 61–70. doi: https://doi.org/10.22201/igeof.00167169p.1991.30.2.1134
Mosseoux S., Saey M., Bartolini S., Poppe S., Canters C., and Kervyn M. (2016). Q-LAVHA: A flexible GIS plugin to simulate lava flows. Computers & Geosciences, 97. 98–109. doi: http://dx.doi.org/10.1016/j.cageo.2016.09.003.
Németh, K., & Moufti, M. R. (2023). Lava Flow Hazard and Its Implication in Geopark Development for the Active Harrat Khaybar Intracontinental Monogenetic Volcanic Field, Saudi Arabia. Land, 12(3), 705. doi: https://doi.org/10.3390/land12030705
Nieto-Torres A., Espinasa-Pereña R., Martin-Del Pozzo A.L. (2022). The Xitle Lava Tubes in México City, Conservation or Destruction? Geoheritage. 14, 66. doi: http://doi.org/10.1007/s12371-022-00702-y
Nieto-Torres A., Martin Del Pozzo A. L., Groppelli G., Jaimes Viera M.C. (2023). Risk scenarios for a future eruption in the Chichinautzin monogenetic volcanic field, south México City. Journal of Volcanology and Geothermal Research, 433,107733. doi: https://doi.org/10.1016/j.jvolgeores.2022.107733
Nieto-Torres, A. (2020). Evaluación del riesgo asociado al vulcanismo monogenético hacia la Ciudad de México. [Tesis de doctorado]. Universidad Nacional Autónoma de México, Instituto de Geofísica.
Nieto-Torres, A. and Martin Del Pozzo, A.L. (2019). Spatio-temporal hazard assessment of a monogenetic volcanic field, near México City. Journal of Volcanology and Geothermal Research, 371. 46–58. doi: https://doi.org/10.1016/j.jvolgeores.2019.01.006
Osete, M.L., Ruiz, V.C., Caballero, C., Galindo, C., Urrutia, J. and Tarling, D.H. (2000). Southward migration of continental volcanic activity in the Sierra de Las Cruces, Mexico: palaeomagnetic and radiometric evidence. Tectonophysics. 318(1-4), 201-215. doi: https://doi.org/10.1016/S0040-1951(99)00312-1
Pedersen, G. B. M., Pfeffer, M. A., Barsotti, S., Tarquini, S., de' Michieli Vitturi, M., Óladóttir, B., and Þrasstarson, R. H. (2023). Lava flow hazard modelling during the 2021 Fagradalsfjall eruption, Iceland: Applications of MrLavaLoba. Natural Hazards in Earth System, 23(9), 3147-3168. doi: https://doi.org/10.5194/nhess-2022-166
Prieto-Torrell, C., Rodriguez-Gonzalez, A., Aulinas, M., Fernandez-Turiel, J. L., Cabrera, M. C., Criado, C., & Pérez-Torrado, F. J. (2021). Modelling and simulation of a lava flow affecting a shore platform: a case study of Montaña de Aguarijo eruption, El Hierro (Canary Islands, Spain). Journal of Maps, 17(2), 516-525. doi: https://doi.org/10.1080/17445647.2021.1972853
Ramayanti, S., Achmad, A. R., Jung, H. C., Jo, M. J., Kim, S. W., Park, Y. C., & Lee, C. W. (2022). Measurement of surface deformation related to the December 2018 Mt. Etna eruption using time-series interferometry and magma modeling for hazard zone mapping. Geosciences Journal, 26(6), 749-765. doi: https://doi.org/10.1007/s12303-022-0021-2
Rodriguez-Gonzalez, A., Aulinas, M., Mossoux, S., Perez-Torrado, F. J., Fernandez-Turiel, J. L., Cabrera, M., & Prieto-Torrell, C. (2021). Comparison of real and simulated lava flows in the Holocene volcanism of Gran Canaria (Canary Islands, Spain) with Q-LavHA: Contribution to volcanic hazard management. Natural Hazards, 107(2), 1785-1819. doi: https://doi.org/10.1007/s11069-021-04660-6
Rodríguez-González, A., Aulinas, M., Mossoux, S., Pérez-Torrado, F. J., Fernandez-Turiel, J. L., & Moreno-Medina, C. (2019). Lava flow modelling of Pico de Bandama volcano (Gran Canaria, Canary Islands). Geogaceta, 65, 19-22.
Romero, E. (1998). Geología del volcán Ajusco. [Tesis de Ingeniera] Universidad Nacional Autónoma de México. Facultad de Ingeniería.
Rowland, S.K., Walker, G.P.L. (1990). Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure. Bulletin of Volcanology, 52, 615–628. doi: https://doi.org/10.1007/BF00301212
Siebe, C. (2000). Age and archaeological implications of Xitle volcano, southwestern Basin of Mexico-City. Journal of Volcanology and Geothermal Research, 104, 45-64. doi: https://doi.org/10.1016/S0377-0273(00)00199-2
Siebe, C. (2004). Radiocarbon ages of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico City: implications for archeology and future hazards. Bulletin of Vulcanology, 66, 203-225. doi: https://doi.org/10.1007/s00445-003-0304-z
Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920. doi: https://doi.org/10.1029/TR038i006p00913
Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117-1142. doi: https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
Thompson, J.O., Ramsey, M.S. (2021). The infuence of variable emissivity on lava fow propagation modeling. Bulletin of Volcanology, 83, 41. doi: https://doi.org/10.1007/s00445-021-01462-3
Vilches, M., Ureta, G., Grosse, P., Németh, K., Aguilera, F., & Aguilera, M. (2022). Effusion rate estimation based on solidified lava flows: Implications for volcanic hazard assessment in the Negros de Aras monogenetic volcanic field, northern Chile. Journal of Volcanology and Geothermal Research, 422, 107454. doi: https://doi.org/10.1016/j.jvolgeores.2021.107454
Wantim, M.N., Kervyn, M., Ernst, G.G.J., del Marmol, M.A., Suh,C.E., Jacobs, P. (2013). Numerical experiments on the dynamics of channelised lava flows at Mount Cameroon volcano with the FLOWGO thermo-rheological model. Journal of Volcanology and Geothermal Research, 253, 35-53. doi: http://dx.doi.org/10.1016/j.jvolgeores.2012.12.003
White S.E. (1990). El Ajusco: Geomorfología Volcánica y acontecimientos glaciares durante el Pleistoceno Superior y comparación con las series Glaciares Mexicanas y de las Montañas Rocallosas. Instituto Nacional de Antropología e Historia.