Una interpretación geométrica de las funciones ortogonales empíricas

Main Article Content

H. G. Peña
A. Badan-Dangon

Abstract

A simple geometric interpretation of Empirical Orthogonal Functions is presented for the case where the frrst two modes representa large percentage ofthe total variance (say, 90%). A geometric representation in two dimensions (aplane), permits a rapid, informative and succinct inspection of the interrelation among the original variables. The relative error produced by suppressing the third mode is estimated. These concepts are applied to a series of data from oceanographic current meters at different depths. The geometric interpretation can be extended to more than two dimensions although the visualization becomes obviously more difficult.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
14170
145

Indexed in

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

PFL

1 2 3 4 5
Not useful Very useful

Article Details

How to Cite
Peña, H. G., & Badan-Dangon, A. (1983). Una interpretación geométrica de las funciones ortogonales empíricas. Geofisica Internacional, 22(4), 329–343. https://doi.org/10.22201/igeof.00167169p.1983.22.4.861
Section
Article

References

ALLEN, J. S. and R. L. SMITH, 1981. On the dynamics of wind-driven shelf currents. Philosophical Transactions, The Royal Society of London, A 302 : 617 - 634. DOI: https://doi.org/10.1098/rsta.1981.0187

BADAN-DANGON, A., 1982. Principal components of the velocity field off NW Africa. Rapports et Proces-Verbaux. CIEM. 180.

BARTON, E. D., J. M. ROBLES P., A. AMADOR B. y C. MORALES Z., 1980. Un año de observaciones de corrientes y temperaturas frente a Baja California. Reporte interno. CICESE.

DAVIS, R. E., 1976. Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. of Phys. Ocean, 6, 249-266. DOI: https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2

KOSAMBI, D. D., 1943. Statistics in function space. J. Indian Math. Soc. 7, 76-88.

KUNDU, P. K., J. S. ALLEN and R. L. SMITH, 1975. Modal decomposition of the velocity field near the Oregon coast. J. of Phys. Ocean., 5, 683-704. DOI: https://doi.org/10.1175/1520-0485(1975)005<0683:MDOTVF>2.0.CO;2

KUTZBACH, J. E., 1967. Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America. J. Appl. Meteor., 6, 791-802. DOI: https://doi.org/10.1175/1520-0450(1967)006<0791:EEOSLP>2.0.CO;2

LORENZ, E. N., 1956. Empirical ortogonal functions and statistical weather prediction. Scientific report No. 1. Statistical Forecasting Project. Department of Meteorology. Massachusetts Institute of Technology.

LUMLEY, J. L., 1970. Stochastic Tools in Turbulence. Academic Press, 194 pp.

PREISENDORFER, R. W., 1977. Most probable eigenvalues of a random covariance matrix. SIO reference series 77-20, Scripps Institution of Oceanography.

SMITH, R. L., 1981. A comparison of the structure and variability of the flow field in three coastal upwelling regions: Oregon, Northwest Africa, and Perú. In: F. A. Richards (Ed.) Coastal Upwelling. AGU, 107-118. DOI: https://doi.org/10.1029/CO001p0107

WANG, D. P. and J. J. WALSH, 1976. Objective analysis of the upwelling ecosystem off Baja California. J. Mar. Res., 34, 43-60.

WINANT, C. D. and D.G. AUBREY, 1976. Stability and impulse function of empirical eigenfunctions. Proceedings of 15th coastal Engineering Conference ASCE. DOI: https://doi.org/10.9753/icce.v15.76

WINANT, C. D., D. L. INMAN and C. E. NORDSTROM, 1975. Description of seasonal beach changes using empirical eigenfunctions. J. Geoph. Res., 80, 1979-1986. DOI: https://doi.org/10.1029/JC080i015p01979