Una interpretación geométrica de las funciones ortogonales empíricas
Main Article Content
Abstract
A simple geometric interpretation of Empirical Orthogonal Functions is presented for the case where the frrst two modes representa large percentage ofthe total variance (say, 90%). A geometric representation in two dimensions (aplane), permits a rapid, informative and succinct inspection of the interrelation among the original variables. The relative error produced by suppressing the third mode is estimated. These concepts are applied to a series of data from oceanographic current meters at different depths. The geometric interpretation can be extended to more than two dimensions although the visualization becomes obviously more difficult.
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- Geofísica Internacional
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
ALLEN, J. S. and R. L. SMITH, 1981. On the dynamics of wind-driven shelf currents. Philosophical Transactions, The Royal Society of London, A 302 : 617 - 634. DOI: https://doi.org/10.1098/rsta.1981.0187
BADAN-DANGON, A., 1982. Principal components of the velocity field off NW Africa. Rapports et Proces-Verbaux. CIEM. 180.
BARTON, E. D., J. M. ROBLES P., A. AMADOR B. y C. MORALES Z., 1980. Un año de observaciones de corrientes y temperaturas frente a Baja California. Reporte interno. CICESE.
DAVIS, R. E., 1976. Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. of Phys. Ocean, 6, 249-266. DOI: https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2
KOSAMBI, D. D., 1943. Statistics in function space. J. Indian Math. Soc. 7, 76-88.
KUNDU, P. K., J. S. ALLEN and R. L. SMITH, 1975. Modal decomposition of the velocity field near the Oregon coast. J. of Phys. Ocean., 5, 683-704. DOI: https://doi.org/10.1175/1520-0485(1975)005<0683:MDOTVF>2.0.CO;2
KUTZBACH, J. E., 1967. Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America. J. Appl. Meteor., 6, 791-802. DOI: https://doi.org/10.1175/1520-0450(1967)006<0791:EEOSLP>2.0.CO;2
LORENZ, E. N., 1956. Empirical ortogonal functions and statistical weather prediction. Scientific report No. 1. Statistical Forecasting Project. Department of Meteorology. Massachusetts Institute of Technology.
LUMLEY, J. L., 1970. Stochastic Tools in Turbulence. Academic Press, 194 pp.
PREISENDORFER, R. W., 1977. Most probable eigenvalues of a random covariance matrix. SIO reference series 77-20, Scripps Institution of Oceanography.
SMITH, R. L., 1981. A comparison of the structure and variability of the flow field in three coastal upwelling regions: Oregon, Northwest Africa, and Perú. In: F. A. Richards (Ed.) Coastal Upwelling. AGU, 107-118. DOI: https://doi.org/10.1029/CO001p0107
WANG, D. P. and J. J. WALSH, 1976. Objective analysis of the upwelling ecosystem off Baja California. J. Mar. Res., 34, 43-60.
WINANT, C. D. and D.G. AUBREY, 1976. Stability and impulse function of empirical eigenfunctions. Proceedings of 15th coastal Engineering Conference ASCE. DOI: https://doi.org/10.9753/icce.v15.76
WINANT, C. D., D. L. INMAN and C. E. NORDSTROM, 1975. Description of seasonal beach changes using empirical eigenfunctions. J. Geoph. Res., 80, 1979-1986. DOI: https://doi.org/10.1029/JC080i015p01979