Sulfatos y nitratos en partículas atmosféricas y su relación con algunos parámetros ópticos

Contenido principal del artículo

S. Salazar
J. L. Bravo

Resumen

En el presente trabajo se determinan concentraciones aproximadas de sulfatos y nitratos en aerosol atmosférico y se obtiene la relación de éstos con la visibilidad y turbiedad en la región visible y ultravioleta del espectro. Los resultados muestran que existe una alta correlación de estos radicales con los parámetros de turbiedad. Además, mediante el ajuste de una ecuación lineal de variable múltiple y conociendo las concentraciones de S04= y N03-, es posible estimar las medias diarias de la visibilidad y el coeficiente de turbiedad de Ángstrom. De los parámetros ópticos estudiados en este trabajo, los nitratos juegan un papel más importante que los sulfatos, no obstante que el contenido de sulfatos es mayor que el de nitratos.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2,4 promedio

Reviewer profiles  N/D

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/D
32% con financiadores
Competing interests 
N/D
11%
Metric
Para esta revista
Other journals
Articles accepted 
Artículos aceptados: 2%
33% aceptado
Days to publication 
13172
145

Indexado: {$indexList}

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

Detalles del artículo

Cómo citar
Salazar, S., & Bravo, J. L. (1986). Sulfatos y nitratos en partículas atmosféricas y su relación con algunos parámetros ópticos. Geofísica Internacional, 25(3), 455–469. https://doi.org/10.22201/igeof.00167169p.1986.25.3.1227
Sección
Artículo

Citas

APPEL, B. R., S. M. W ALL, Y. TOKIWA and M. HAIK, 1979. Interference Effects in Sampling Particulate nitrate in ambient air. Atmos. Environ. 11, 873-876.

APPEL, B. R., S. M. W ALL, Y. TOKIWA and M. HAIK, 1980. Simultaneous Nitric Acid, Particulate Nitrate and Acidity Measurements in Ambient Air. Atmos. Environ. 14, 549-554. DOI: https://doi.org/10.1016/0004-6981(80)90084-0

BRAVO, J. L., y S. SALAZAR, 1982. Concentración del Aerosol Mineral en la Zona Sur de la Ciudad de México. Geofísica Internacional, 21, 139-155. DOI: https://doi.org/10.22201/igeof.00167169p.1982.21.2.908

BRAVO, J. L. y S. SALAZAR, 1984. Algunos Resultados sobre la Concentración de Compuestos Orgánicos Solubles en Benceno en el Aerosol Atmosférico. Geofísica Internacional, 23, 4, 467-473. DOI: https://doi.org/10.22201/igeof.00167169p.1984.23.4.2172

BROSSET, C., 1978. Water-Soluble Sulphur Compounds in Aerosols. Atmos. Environ. 12, 25-38. DOI: https://doi.org/10.1016/B978-0-08-022932-4.50008-2

CHARLSON, R. J., D. S. COVERT, T. V. LARSON and A. P. WAGGONER, 1978. Chemical Properties of Tropospheric Sulfur Aerosols. Atmos. Environ. 12, 39-53. DOI: https://doi.org/10.1016/B978-0-08-022932-4.50009-4

GALINDO, I. and A. MUHLIA, 1970. Contribution to the Turbidity Problem in Mexico City. Arch. Met. Geoph. Bioke., Ser. B. 18, 169-186. DOI: https://doi.org/10.1007/BF02243025

GALINDO, I., J. L. BRAVO and S. SALAZAR, 1977. Atmospheric Ozone, Haze Extinction and Anthropogenic Surface Ozone. Proc. Joint Symp. on Atmospheric Ozone, Vol. III, Berlin. National Komitee für Geodasie und Geophysik bei der Akad. der Wissens, der DDR.

GARLAND, J. A., 1978. Dry and Wet Removal of Sulphur from the Atmosphere. Atmos. Environ. 12, 349-362. DOI: https://doi.org/10.1016/B978-0-08-022932-4.50039-2

GEORGII, H-W, 1978. Large Scale Spatial and Temporal Distribution of Sulfur Compounds. Atmos. Environ. 12, 681-690. DOI: https://doi.org/10.1016/B978-0-08-022932-4.50070-7

HIDY, G. M., B. R. APPEL, R. J. CHARLSON, W. E. CLARK, S. K. FIEDLANDER, D. H. HUTCHISON, T. B. SMITH, J. SUDER, J. J. WESOLOWSKI, K. T. WHITBY, 1975. Summary of the California Aerosol Characterization Experiment. J. Air. Pollut. Cont. Ass. 25, 1106. DOI: https://doi.org/10.1080/00022470.1975.10470183

HIDY, G. M., P. K. MUELLER and E. Y. TONG, 1978. Spatial and Temporal Distributions of Airborne Sulfate in Parts of the United States. Atmos. Environ. 12, 735-752. DOI: https://doi.org/10.1016/B978-0-08-022932-4.50077-X

HOGG, R. V. and A. T. CRAIG, 1965. Introduction to Mathematical Statistics. Fourth Edition, McMillan, New York, 380-384.

JAUREGUI, E. O., 1983. Variaciones de Largo Período de la Visibilidad en la Ciudad de México. Geofísica Internacional, 22, 3, 251-275. DOI: https://doi.org/10.22201/igeof.00167169p.1983.22.3.868

KADOWAKI, S., 1977. Size Distribution and Chemical Composition of Atmospheric Particulate Nitrate in the Nagoya Area. Atmos. Environ., 11, 671-675. DOI: https://doi.org/10.1016/0004-6981(77)90174-3

KLEINMAN, M. T., C. TOMCZYK, B. P. LEADERER and R. L. TANNER, 1979. Inorganic Nitrogen Compounds in New York City Air. Ann. N. Y. Acad. Sci., 322, 115-123. DOI: https://doi.org/10.1111/j.1749-6632.1979.tb14121.x

Laboratory Division Texas Air Control Board, 1978. Determination of Sulfate-Ver Method; Determination of Nitrate Reduction-Diazotization Method.

LEADERER, B. P. and J. A. STOLWIJK, 1980. Optical Properties of the Urban Aerosol and their Relation to Chemical Composition. Ann. N. Y. Acad. Sci., 338, 70-85. DOI: https://doi.org/10.1111/j.1749-6632.1980.tb17112.x

LEADERER, B. P. and J. A. STOLWIJK, 1981. Seasonal Visibility and Pollutant Sources in the Northeastern United States. Environ. Sci. Technol., 15, 305-309 DOI: https://doi.org/10.1021/es00085a006

LOO, B. W., W. R. FRENCH, R. C. GATTI, F. S. GOULDING, J. M. JAKLEVIC, J. LLACER and A. C. THOMPSON, 1978. Large-Scale Measurement of Airborne Particulate Sulfur. Atmos. Environ. 12, 759-771. DOI: https://doi.org/10.1016/B978-0-08-022932-4.50079-3

MILLER, D. F., W. E. SCHWARTZ, P. E. JONES, D. W. JOSEPH, C. W. SPICER, C. J. PIGGLE and A. LEVY, 1973. Haze formation: its Nature and Origin. Battelle-Columbus Laboratories Report to EPA and CRC. EPA Report # 650/3/74/ 002 NERC.

NAVAKOV, T., P. K. MUELLER, A. E. ALCOCER and J. W. OTVOS, 1972. Chemical Composition of Pasadena Aerosol by Particle size and time of day. J. Colloid. Interface Sci., 39, 285-294. DOI: https://doi.org/10.1016/B978-0-12-347250-2.50028-8

O'BRIEN, R. J., J. H. CRABTREE, J. R. HOLMES, M. C. HOOGAN and A. H. BOCKIAN, 1975. Formation of Photochemical Aerosol from Hydrocarbons. Environ. Sci. Technol. 9, 577-582. DOI: https://doi.org/10.1021/es60104a004

SALAZAR, S., J. L. BRAVO e Y. FALCON, 1981. Sobre la Presencia de algunos Metales Pesados en la Atmósfera de la Ciudad de México. Geofísica Internacional, 20, 41-54. DOI: https://doi.org/10.22201/igeof.00167169p.1981.20.1.2167

SANDBERG, J. S., D. A. LEVAGGI, R. E. DeMANDEL and W. SIU, 1976. Sulfate and Nitrate Particulates as Related to SO2 and NOx Gases and Emissions. J. Air. Pollut. Cont. Ass., 26, 559-564. DOI: https://doi.org/10.1080/00022470.1976.10470283

SCHUMACHER, P. M. and C. W. SPICER, 1976. Interferences in the Sampling of Particulate Atmospheric Nitrate-Laboratory Results, paper presented at the 172nd National Meeting. Am. Chem. Soc., San Fco. SPICER, C. W., 1977. Photochemical Atmospheric Pollutants derived from Nitrogen Oxides. Atmos. Environ., 11, 1089-1095. DOI: https://doi.org/10.1016/0004-6981(77)90239-6

SPICER, C. W. and P. SCHUMACHER, 1977. Interferences in Sampling Atmospheric Particulate Nitrate. Atmos. Environ., 11, 873-876. DOI: https://doi.org/10.1016/0004-6981(77)90062-2

TANNER, R. L., 1980. Sulfur and Nitrogen Compounds in Urban Aerosols. Ann. N. Y., Acad. Sci., 338, 39-49. DOI: https://doi.org/10.1111/j.1749-6632.1980.tb17110.x

WAGGONER, A. P., A. J. VANDERPOL, R. J. CHARLSON, S. LARSEN, L. GRANAT and C. TRAGARDH, 1976. Sulphate-Light Scattering Ratio as an Index of the Role of Sulfur in Tropospheric Optics. Nature, 261, 120-122. DOI: https://doi.org/10.1038/261120a0

WHITBY, K. T., R. B. HUSAR and B. Y. H. LIU, 1972. The Aerosol Size Distribution of Los Angeles Smog. Ins. Aerosols and Atmospheric Chemistry. Ed. G. M. Hidy. pp. 137-264. Acad. Press, New York. DOI: https://doi.org/10.1016/B978-0-12-347250-2.50025-2

WHITBY, K. T., 1973. On the Multimodal Nature of Atmospheric Aerosol Size Distribution. Particle Technology Lab. Publication No. 218. University of Minnesota.

Artículos más leídos del mismo autor/a