Predicción del campo de las isohipsas, a partir de la solución de una ecuación tipo elíptica por serie de Fourier

Main Article Content

T. Castro
L. Le Moyne H.
E. Villanueva U.

Abstract

The stream function is expressed like a double Fourier Series in an equation of the elliptical kind; this has been transformed in a set of linear equations for the coefficients. These equations have been resolved, for forecasting purpose, using numerical integration neglecting thelarge scales of movement. The initial coefficients are approached by using double integrals of trigonometric functions. The working area is limited to latitudes 10° and 46°north; and by longitudes 65° and 125° west, with a 4°spacing. For maximum wavelength the zonal and meridional waves of 6 649 km and 4 150 km, respectively, have been used; these give the wave numbers and the Fourier Serie limits. The forecasting precision rate has been obtained by the Pearson correlation index, finding a maximum correlation of 0.85.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
13625
145

Indexed in

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

PFL

1 2 3 4 5
Not useful Very useful

Article Details

How to Cite
Castro, T., Moyne H., L. L., & Villanueva U., E. (1985). Predicción del campo de las isohipsas, a partir de la solución de una ecuación tipo elíptica por serie de Fourier. Geofisica Internacional, 24(2), 245–264. https://doi.org/10.22201/igeof.00167169p.1985.24.2.1043
Section
Article

References

BAER, P., and G. PLATZMAN, 1961. A procedure for numerical integration of the spectral vorticity equation. J. Met., 18, 393-401. DOI: https://doi.org/10.1175/1520-0469(1961)018<0393:APFNIO>2.0.CO;2

DARON, E., A. HOLLINGWORTH, B. J. HASKINS and A. J. SIM-MONS, 1974. A comparison of grid-point and spectral methods in a meteorological problem. Quart. J. R. Met. Soc., 100, 371-383. DOI: https://doi.org/10.1002/qj.49710042509

ELIASEN, E., B. MACHENHAUER and E. RASMUSSEN, 1970. On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Inst. for Teo. Met. Kobenhaus Univ. Report 2.

ELSAESSER, H. W., 1966. Evaluation of spectral versus grid methods of hemispheric numerical weather prediction. J. of Appl. Met., 15, 246-262. DOI: https://doi.org/10.1175/1520-0450(1966)005<0246:EOSVGM>2.0.CO;2

HALTINER, G. J., 1971. Numerical weather prediction. J. Willey & Sons.

KUBOTA, S., M. HIROSE, Y. KIKUCHI and Y. KURIHARA, 196i. Barotropic forecasting with the use of surface spherical harmonic representation. Pap. Met. Geophys. 12, 199-225. DOI: https://doi.org/10.2467/mripapers1950.12.3-4_199

LORENZ, E. N., 1960. Maximum simplification of the dynamics equations. Tellus, 12, 3, 243-254. DOI: https://doi.org/10.1111/j.2153-3490.1960.tb01307.x

ORSZAG, S. A., 197·1. Numerical simulation of incompressible flows within simple boundaries: accuracy. S. Fluid. Mech., 49, 75-113. DOI: https://doi.org/10.1017/S0022112071001940

PLATZMAN, G. W., 1960. The spectral form of the vorticity equations. J. Met. 17, 635-644. DOI: https://doi.org/10.1175/1520-0469(1960)017<0635:TSFOTV>2.0.CO;2

SIBERMAN, l., 1954. Planetary waves in the atmosphere. J. Met., 11, 27-34. DOI: https://doi.org/10.1175/1520-0469(1954)011<0027:PWITA>2.0.CO;2

SHUKLA, J., 1972. Barotropic model: a review. Indian J. Met. Geophys, 23, 202-206.

SHAW, F. S., 1953. Relaxation Methods and introduction to approximational methods for differential equations. Ed. Dover.

Most read articles by the same author(s)