Determination of surface composition of the moon from a lunar satellite

Main Article Content

D. B. Wittry
G. Arrhenius
L. H. Cohen

Abstract

The long·range scientific merits of determining the variations in chemical composition over the surface of the Moon are discussed. Possible methods are reviewed for obtaining continuous measurements of atomic concentrations in the lunar surface from a satellite in orbit around the Moon. It is concluded that the characteristic X.radiation of the lunar surface, excited by corpuscular radiation from the Sun during active periods, offers the most promising source of information on variation in concentration or the major elements. ince it is expected that at least one of the lunar probes will cnrry an a gamma-ray spectrograph, examination or x.radiation from the Moon's surface will make further use or equipment already exjsting in the satellite.


Thick target yields or X-radiation are computed for the range or elements concerned and at diflerent proton fluxes. The counting rate and spatial resolution obtainable from instrumentation in orbit at different altitudes are investigated in terms of relative standard error. Making a conservative calculation but neglecting back·ground, a resolution of 95 Km (diameter of Copernicus' Crater) is estimated at an altitude of 400 Km with 90 per cent confidence of the counting statistics at a flux or 104 protons/ sec. At lower altitudes or higher proton flux, the resolution will be considerably improved.


The critical importance of background problems is indicated and possible approaches to solution outlined.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
22502
145

Indexed in

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

PFL

1 2 3 4 5
Not useful Very useful

Article Details

How to Cite
Wittry, D. B., Arrhenius, G., & Cohen, L. H. (1961). Determination of surface composition of the moon from a lunar satellite. Geofisica Internacional, 1(4), 95–106. https://doi.org/10.22201/igeof.2954436xe.1961.1.4.1708
Section
Article

References

ARNOLD, J. R. 1958. y Ray Spectroscopy of the Moon's Surface. Proc. Lunar and Planetary Explor. Colloquium. (Aero-Space Laboratories, North American Aviation, Inc.), Vol. 1, No. 3.

ARNOLDY, R. L., R. A. HOFFMAN and J. R. WINCKLER. 1960. Solar Cosmic Ray and Soft Radiation Observed at 5,000,000 Kilometers from Earth. Jour. Geophys. Res., 65 : 3004-3007. DOI: https://doi.org/10.1029/JZ065i009p03004

BUCHHEIM, R. W. 1959. Lunar Flight Trajectories. In Space Technology. (Ed. H. S. Seifert) New York, 1 vol., il.

CHUBB, T. A., H. FRIEDMAN and R. W. KREPLIN. 1960. Measurements Made of High energy X·rays Accompanying Three Class 2 + Solar Flares. Jour. Geophys. Res., 65 : 1831-32. DOI: https://doi.org/10.1029/JZ065i006p01831

COMPTON, A. H. and S. K. ALLISON. 1935. X - rays in Theory and Experiment (2nd. ed.). New York, 1 vol. il.

DAVIS, L. R., C. E. FUCHTEL, D. E. GUISS and K. W. OGILVIE. 1961. Rocket Observations of Solar Protons on September 3, 1960. Phys. Rev. Letters, 6 : 492-494. DOI: https://doi.org/10.1103/PhysRevLett.6.492

ELWERT, C. 1960. Theory of X-Ray Emission of the Sun. Jour. Geophys. Res., 66 : 391-401. DOI: https://doi.org/10.1029/JZ066i002p00391

HODGMAN, C. D., Ed. 1948. Handbook of Chemistry and Physics, Cleveland, Ohio, 1 vol., il.

JAFFE, L. D. and J. B. RITTENHOUSE. 1961. Behavior of Materials in Space Environments. Jet Propulsion Laboratory Technical Report, 32-150 (unpublished). DOI: https://doi.org/10.2514/8.6014

KREPLIN, R. W. 1961. Solar X-Rays. Ann. de Gèophysique, 17 : 151-161.

LEWIS, H. B., B. E. SIMMONS and E. MERZBACHER. 1953. Production of Characteristic X-rays by Protons of 1.7 to 3-Mev Energy. Phys. Rev., 91 : 943-946. DOI: https://doi.org/10.1103/PhysRev.91.943

LIEBHAFSKY, H. A., H. G. PFEIFFER, E. H. WINSLOW and P. D. ZEMANY. 1960. X-Ray Absorption and Emission in Analytical Chemistry. New York, 1 vol., il. DOI: https://doi.org/10.1021/ac60161a017

MERZBACHER, E. and H. W. LEWIS. 1958. X-ray Production by Heavy Charged Particles. Handb. der Physik, 34 : 166-192. DOI: https://doi.org/10.1007/978-3-642-45898-9_4

MESSELT, S. 1958. K-shell Ionization by Protons. Nucl. Phys., 5 : 435-446. DOI: https://doi.org/10.1016/0029-5582(58)90047-6

UREY, H. C. and H. CRAIG. 1953. The Composition of the Stone Meteorites and the Origin of the Meteorites. Geochim. et Cosmochim. Acta, 4 : 36-82. DOI: https://doi.org/10.1016/0016-7037(53)90064-7

WHALING, W. 1958. The Energy Loss of Charged Particles in Mattre. Handb. der Physik, 34 : 193-217. DOI: https://doi.org/10.1007/978-3-642-45898-9_5

WINCKLER, J. R. and P. D. BHAVSAR. 1960. Low·Energy Solar Cosmic Rays and the Geomagnetic Storm of May 12. 1959. Jour. Geophys. Res., 65 : 2637-2655. DOI: https://doi.org/10.1029/JZ065i009p02637

WINCKLER, J. R., P. D. BHAVSAR and L. P ETERSOX. 1960. The Time Variations of Solar Cosmic Rays During July, 1959 at Minneapolis. Univ. Minnessota Tech. Report CR-31 (Unpublished). DOI: https://doi.org/10.1029/JZ066i004p00995

WINCKLER, J. R., P. D. BHAVSAR, A. J. MASLEY and T. C. MAY. 1961. Delayed Propagation of Solar Cosmic Rays on September 3, 1960. Phys. Rev. Letters, 6 : 438-491. DOI: https://doi.org/10.1103/PhysRevLett.6.488