Determination of surface composition of the moon from a lunar satellite
Main Article Content
Abstract
The long·range scientific merits of determining the variations in chemical composition over the surface of the Moon are discussed. Possible methods are reviewed for obtaining continuous measurements of atomic concentrations in the lunar surface from a satellite in orbit around the Moon. It is concluded that the characteristic X.radiation of the lunar surface, excited by corpuscular radiation from the Sun during active periods, offers the most promising source of information on variation in concentration or the major elements. ince it is expected that at least one of the lunar probes will cnrry an a gamma-ray spectrograph, examination or x.radiation from the Moon's surface will make further use or equipment already exjsting in the satellite.
Thick target yields or X-radiation are computed for the range or elements concerned and at diflerent proton fluxes. The counting rate and spatial resolution obtainable from instrumentation in orbit at different altitudes are investigated in terms of relative standard error. Making a conservative calculation but neglecting back·ground, a resolution of 95 Km (diameter of Copernicus' Crater) is estimated at an altitude of 400 Km with 90 per cent confidence of the counting statistics at a flux or 104 protons/ sec. At lower altitudes or higher proton flux, the resolution will be considerably improved.
The critical importance of background problems is indicated and possible approaches to solution outlined.
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- Geofísica Internacional
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
ARNOLD, J. R. 1958. y Ray Spectroscopy of the Moon's Surface. Proc. Lunar and Planetary Explor. Colloquium. (Aero-Space Laboratories, North American Aviation, Inc.), Vol. 1, No. 3.
ARNOLDY, R. L., R. A. HOFFMAN and J. R. WINCKLER. 1960. Solar Cosmic Ray and Soft Radiation Observed at 5,000,000 Kilometers from Earth. Jour. Geophys. Res., 65 : 3004-3007. DOI: https://doi.org/10.1029/JZ065i009p03004
BUCHHEIM, R. W. 1959. Lunar Flight Trajectories. In Space Technology. (Ed. H. S. Seifert) New York, 1 vol., il.
CHUBB, T. A., H. FRIEDMAN and R. W. KREPLIN. 1960. Measurements Made of High energy X·rays Accompanying Three Class 2 + Solar Flares. Jour. Geophys. Res., 65 : 1831-32. DOI: https://doi.org/10.1029/JZ065i006p01831
COMPTON, A. H. and S. K. ALLISON. 1935. X - rays in Theory and Experiment (2nd. ed.). New York, 1 vol. il.
DAVIS, L. R., C. E. FUCHTEL, D. E. GUISS and K. W. OGILVIE. 1961. Rocket Observations of Solar Protons on September 3, 1960. Phys. Rev. Letters, 6 : 492-494. DOI: https://doi.org/10.1103/PhysRevLett.6.492
ELWERT, C. 1960. Theory of X-Ray Emission of the Sun. Jour. Geophys. Res., 66 : 391-401. DOI: https://doi.org/10.1029/JZ066i002p00391
HODGMAN, C. D., Ed. 1948. Handbook of Chemistry and Physics, Cleveland, Ohio, 1 vol., il.
JAFFE, L. D. and J. B. RITTENHOUSE. 1961. Behavior of Materials in Space Environments. Jet Propulsion Laboratory Technical Report, 32-150 (unpublished). DOI: https://doi.org/10.2514/8.6014
KREPLIN, R. W. 1961. Solar X-Rays. Ann. de Gèophysique, 17 : 151-161.
LEWIS, H. B., B. E. SIMMONS and E. MERZBACHER. 1953. Production of Characteristic X-rays by Protons of 1.7 to 3-Mev Energy. Phys. Rev., 91 : 943-946. DOI: https://doi.org/10.1103/PhysRev.91.943
LIEBHAFSKY, H. A., H. G. PFEIFFER, E. H. WINSLOW and P. D. ZEMANY. 1960. X-Ray Absorption and Emission in Analytical Chemistry. New York, 1 vol., il. DOI: https://doi.org/10.1021/ac60161a017
MERZBACHER, E. and H. W. LEWIS. 1958. X-ray Production by Heavy Charged Particles. Handb. der Physik, 34 : 166-192. DOI: https://doi.org/10.1007/978-3-642-45898-9_4
MESSELT, S. 1958. K-shell Ionization by Protons. Nucl. Phys., 5 : 435-446. DOI: https://doi.org/10.1016/0029-5582(58)90047-6
UREY, H. C. and H. CRAIG. 1953. The Composition of the Stone Meteorites and the Origin of the Meteorites. Geochim. et Cosmochim. Acta, 4 : 36-82. DOI: https://doi.org/10.1016/0016-7037(53)90064-7
WHALING, W. 1958. The Energy Loss of Charged Particles in Mattre. Handb. der Physik, 34 : 193-217. DOI: https://doi.org/10.1007/978-3-642-45898-9_5
WINCKLER, J. R. and P. D. BHAVSAR. 1960. Low·Energy Solar Cosmic Rays and the Geomagnetic Storm of May 12. 1959. Jour. Geophys. Res., 65 : 2637-2655. DOI: https://doi.org/10.1029/JZ065i009p02637
WINCKLER, J. R., P. D. BHAVSAR and L. P ETERSOX. 1960. The Time Variations of Solar Cosmic Rays During July, 1959 at Minneapolis. Univ. Minnessota Tech. Report CR-31 (Unpublished). DOI: https://doi.org/10.1029/JZ066i004p00995
WINCKLER, J. R., P. D. BHAVSAR, A. J. MASLEY and T. C. MAY. 1961. Delayed Propagation of Solar Cosmic Rays on September 3, 1960. Phys. Rev. Letters, 6 : 438-491. DOI: https://doi.org/10.1103/PhysRevLett.6.488