Un algoritmo de suavización para curvas empiricas

Main Article Content

J. Frez

Abstract

There are several methods for smoothing empirical functions. A standard method consists in the minimization of the quadratic norms for both, the vector of residuals, and the vector of the p-th derivative of the function to be estimated. Here, the contribution of the nuIl-space of the derivative functional is considered and Green's functions are used for inverting this operator. The algorithm contains global and local means of controlling the degree of fitting. The procedure is applied to the standard seismological problem of smoothing travel-time tabIcs and the results are compared with two other methods mentioned in the litera tu re, namely, a eubic spline scheme with variable knots and the summary method of Jeffreys.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
11990
145

Indexed in

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

PFL

1 2 3 4 5
Not useful Very useful

Article Details

How to Cite
Frez, J. (1989). Un algoritmo de suavización para curvas empiricas. Geofisica Internacional, 28(4), 785–794. https://doi.org/10.22201/igeof.00167169p.1989.28.4.1322
Section
Article

References

ARNOLD, E. P., 1968. Smoothing travel-time tables. Bull. Seism. Soc. Am., 58, 1345-1351. DOI: https://doi.org/10.1785/BSSA0580041345

CURTIS, A. R. and M. SHIMSHONI, 1970. The smoothing of seismological travel-time tables using cubic-splines. Bull. Seism. Soc. Am., 60, 1077-1087.

DZIEWONSKI, A. and M. LANDISMAN, 1970. Great circle Rayleigh and Love waves from 100 to 900 seconds. Geophys. J. R. Astr. Soc., 19, 37-91. DOI: https://doi.org/10.1111/j.1365-246X.1970.tb06739.x

HERRIN, E., W. TUCKER, D. W. TAGGART, D. W. GORDON and J. L. LOBDELL, 1968. Estimation of surface-focus P travel times. Bull. Seism. Am., 58, 1273-1291. DOI: https://doi.org/10.1785/BSSA0580041273

HILGERS, J. W., 1976. On the equivalence of regularization and certain reproducing kernel Hilbert space approaches for solving first kind problems. SIAM J. Num. Anal., 13, 172-184. DOI: https://doi.org/10.1137/0713018

JEFFREYS, H., 1961. Theory of Probability, Clarendon Press, Oxford, 3rd Edition, 380 pp.

LANCZOS, C., 1956. Applied Analysis, Prentice Hall, 539 pp.

TIKHONOV, A. N. and V. Y. ARSENIN, 1977. Solution of ill-posed problems, Wiley, 258 pp.

WHITTAKER, E. and G. ROBINSON, 1924. The Calculus of Observations, Blackie and Son. (republished by Dove), 397 pp.