Synthetic seismograms for a dislocation source by Finite-Difference techniques

Main Article Content

J. M. Espíndola
L. W. Braile

Abstract

A method to compute synthetic seismograms from a dislocation source in heterogeneous media by finite-difference techniques is presented. The model consists of a two-dimensional region in skew coordinates. With this technique it is possible to take into account the free surface and different geometric and kinematic characteristics of the source.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
13260
145

Indexed in

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

PFL

1 2 3 4 5
Not useful Very useful

Article Details

How to Cite
Espíndola, J. M., & Braile, L. W. (1986). Synthetic seismograms for a dislocation source by Finite-Difference techniques. Geofisica Internacional, 25(2), 251–283. https://doi.org/10.22201/igeof.00167169p.1986.25.2.845
Section
Article

References

AKI, K., 1968. Seismic displacements near a fault. J. Geophys. Res. 72, 5359-5376. DOI: https://doi.org/10.1029/JB073i016p05359

ALTERMAN, Z. and F. C. KARAL, Jr., 1968. Propagation of elastic waves in layered media by finite difference methods. Bull. Seism. Soc. Am., 58, 367-398.

ALTERMAN, Z. and D. LOWENTHAL, 1970. Seismic waves in a quarter and three quarter plane. Geophys. J. 20, 101-126. DOI: https://doi.org/10.1111/j.1365-246X.1970.tb06058.x

ANDERSON, J. G. and P. G. RICHARDS, 1975. Comparison of strong ground motion from several dislocation models. Geophys. J. 42, 347-373. DOI: https://doi.org/10.1111/j.1365-246X.1975.tb05866.x

BIRCH, F., 1964. Density and composition of mantle and core. J. Geophys. Res. 69, 4377-4388. DOI: https://doi.org/10.1029/JZ069i020p04377

BOORE, D. M., 1972. Finite difference methods for seismic wave propagation in heterogeneous materials, in Methods in Computational Physics, V. II, ed. B. A. Bolt. Academic Press, New York. DOI: https://doi.org/10.1016/B978-0-12-460811-5.50006-4

BOORE, D. M. and M. D. ZOBACK, 1974. Near field motions from kinematic models of propagating faults. Bull. Seism. Soc. Am. 64, 3 21-342.

BRUNE. J. N. 1970. Tectonics stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75, 4997-5009. DOI: https://doi.org/10.1029/JB075i026p04997

CLAYTON, R. and B. ENGQUIST, 1977. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seism. Soc. Am. 67, 1529-1540. DOI: https://doi.org/10.1785/BSSA0670061529

HASKELL. N. A., 1969. Elastic displacements in the near field of a propagating fault. Bull. Seism. Soc. Am., 59, 865-908. DOI: https://doi.org/10.1785/BSSA0590020865

ILAN, A., A. UNGAR and Z. ALTERMAN, 1975. An improved representation of boundary conditions in finite difference schemes for seismological problems. Geophys. J., 43, 727-745. DOI: https://doi.org/10.1111/j.1365-246X.1975.tb06191.x

KELLY. K. R., R. W. WARD. S. TREITEL and R. M. ALFORD, 1976. Synthetic seismograms: a finite difference approach. Geophysics, 41, 2-27. DOI: https://doi.org/10.1190/1.1440605

MADARIAGA, R., 1978. The dynamic field of Haskell's rectangular dislocation fault model. Bull. Seism. Soc. Am., 68, 869-887.

SALVADORI, M. G. and M. L. BARON, 1961. Numerical methods in Engineering. Prentice Hall, Inc., New Jersey.