Synthetic seismograms for a dislocation source by Finite-Difference techniques
Main Article Content
Abstract
A method to compute synthetic seismograms from a dislocation source in heterogeneous media by finite-difference techniques is presented. The model consists of a two-dimensional region in skew coordinates. With this technique it is possible to take into account the free surface and different geometric and kinematic characteristics of the source.
Publication Facts
Reviewer profiles N/A
Author statements
- Academic society
- Geofísica Internacional
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
AKI, K., 1968. Seismic displacements near a fault. J. Geophys. Res. 72, 5359-5376. DOI: https://doi.org/10.1029/JB073i016p05359
ALTERMAN, Z. and F. C. KARAL, Jr., 1968. Propagation of elastic waves in layered media by finite difference methods. Bull. Seism. Soc. Am., 58, 367-398.
ALTERMAN, Z. and D. LOWENTHAL, 1970. Seismic waves in a quarter and three quarter plane. Geophys. J. 20, 101-126. DOI: https://doi.org/10.1111/j.1365-246X.1970.tb06058.x
ANDERSON, J. G. and P. G. RICHARDS, 1975. Comparison of strong ground motion from several dislocation models. Geophys. J. 42, 347-373. DOI: https://doi.org/10.1111/j.1365-246X.1975.tb05866.x
BIRCH, F., 1964. Density and composition of mantle and core. J. Geophys. Res. 69, 4377-4388. DOI: https://doi.org/10.1029/JZ069i020p04377
BOORE, D. M., 1972. Finite difference methods for seismic wave propagation in heterogeneous materials, in Methods in Computational Physics, V. II, ed. B. A. Bolt. Academic Press, New York. DOI: https://doi.org/10.1016/B978-0-12-460811-5.50006-4
BOORE, D. M. and M. D. ZOBACK, 1974. Near field motions from kinematic models of propagating faults. Bull. Seism. Soc. Am. 64, 3 21-342.
BRUNE. J. N. 1970. Tectonics stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75, 4997-5009. DOI: https://doi.org/10.1029/JB075i026p04997
CLAYTON, R. and B. ENGQUIST, 1977. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seism. Soc. Am. 67, 1529-1540. DOI: https://doi.org/10.1785/BSSA0670061529
HASKELL. N. A., 1969. Elastic displacements in the near field of a propagating fault. Bull. Seism. Soc. Am., 59, 865-908. DOI: https://doi.org/10.1785/BSSA0590020865
ILAN, A., A. UNGAR and Z. ALTERMAN, 1975. An improved representation of boundary conditions in finite difference schemes for seismological problems. Geophys. J., 43, 727-745. DOI: https://doi.org/10.1111/j.1365-246X.1975.tb06191.x
KELLY. K. R., R. W. WARD. S. TREITEL and R. M. ALFORD, 1976. Synthetic seismograms: a finite difference approach. Geophysics, 41, 2-27. DOI: https://doi.org/10.1190/1.1440605
MADARIAGA, R., 1978. The dynamic field of Haskell's rectangular dislocation fault model. Bull. Seism. Soc. Am., 68, 869-887.
SALVADORI, M. G. and M. L. BARON, 1961. Numerical methods in Engineering. Prentice Hall, Inc., New Jersey.