Groundwater identification using geophysical tools and its implications for the stability of slopes in an open pit mine

Main Article Content

Beatriz Guzzo Duz
César Augusto Moreira
Marcos Eduardo Hartwig
Felipe Queiroz Miano
Ana Flávia Araújo

Abstract




The open pit mining development begins with the opening of pits with the rock mass excavation and formation of slopes and berms for ore exploration. Knowledge about the geological conditions represents an important step in this process, since rock masses generally have heterogeneous characteristics and the presence of discon- tinuities can become an aggravating factor in the safety of operations. The characterization and classification of these discontinuities, as well as the identification of the groundwater in the rock mass, has a great importance to ensure the safety of operations during the mine's production process, in addition to ensure the effectiveness of its decommissioning process. The use of DC resistivity geophysical method has been increasing to characterization and identification lithological types and presence of water, since it is a non-invasive research tool with fast ability to obtain data. DC resistivity together with visual investigation methods, such as obtaining the discontinuities orientation and their alteration characteristics, provides important information for the characterization of the rock mass. Given this importance, the present work aimed to use DC resistivity to identify the presence of water and its correlation with lithology and rock mass structure in order to identify how these variables influence the occurrence of ruptures. To this end, two-dimensional resistivity sections were designed and related to visual inspection data and kinematic analyzes obtained from structural data of the rock mass. The integration of these results indicated that the ruptures present in the investigated mine slopes are related to zones whose predominant lithology is volcanic breccia with the presence of water in the subsurface. These ruptures compromise the stability of the slopes and consequently make the decommissioning mine process difficult.




Article Details

How to Cite
Guzzo Duz, B., Moreira, C. A., Hartwig, M. E. ., Queiroz Miano, F., & Araújo, A. F. . (2024). Groundwater identification using geophysical tools and its implications for the stability of slopes in an open pit mine. Geofisica Internacional, 63(3), 1033–1043. https://doi.org/10.22201/igeof.2954436xe.2024.63.3.1755
Section
Article

References

ABEM, Instruments. (2012). Terrameter Lund System-Instruction Manual, Stockholm. 122 pp.

Alegre, D. A. G., Peroni, R. de L., & Aquino, E. da R. (2019). The impact of haulroad geometric parameters on open pit mine strip ratio. REM-International Engineering Journal, 72(1), 25–31. doi: https://doi.org/10.1590/0370-44672018720136 DOI: https://doi.org/10.1590/0370-44672018720136

Banks, E.W., Simmons, C.T., Love, A.J. (2009). Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: a conceptual model (Australia). Hydrogeology Journal, 17, 1969-1989. doi: https://doi.org/10.1007/s10040-009-0490-7 DOI: https://doi.org/10.1007/s10040-009-0490-7

Barton, N. (1988). Rock mass classification and tunnel reinforcement using the Q-system. ASTM International. doi: https://doi.org/10.1520/STP48464S DOI: https://doi.org/10.1520/STP48464S

Casagrande M.F.S, Moreira C.A, Targa D.A. (2020). Study of generation and underground fow of acid mine drainage in waste rock pile in uranium mine using electrical resistivity tomography. Pure and Applied Geophysics, 77, 703-721. doi: https://doi.org/10.1007/s00024-019-02351-9 DOI: https://doi.org/10.1007/s00024-019-02351-9

Corrêa, C. V. S., Reis, F. A. G. V., do Carmo Giordano, L., Cabral, V. C., Gramani, M. F., Gabelini, B. M., Duz, G. B. & Veloso, V. Q. (2021). Assessment of the potentiality to the debris-flow occurrence from physiographic and morphometrics parameters: a case study in Santo Antônio Basin (Caraguatatuba, São Paulo State, Brazil). Anuário do Instituto de Geociências, 44. doi: https://doi.org/10.11137/1982-3908_2021_44_43313 DOI: https://doi.org/10.11137/1982-3908_2021_44_43313

Edwards, L.S.A. (1977). A modified pseudo section for resistivity and induced polarization. Geophysics 42(5), 1020-1036. doi: https://doi.org/10.1190/1.1440762 DOI: https://doi.org/10.1190/1.1440762

Fetter, C. W. (2018). Applied hydrogeology. Waveland Press.

Fraenkel, M.O.; Santos, R.C.; Loureiro, F.E.V.L.; Muniz, W.S. (1985). Jazida de urânio no Planalto de Poços de Caldas-Minas Gerais. En A. Departamento Nacional da Produção Mineral (Eds.), Principais depósitos minerais do Brasil. (pp. 89-103).

Gastmaier Marques, A. C., Moreira, C. A., Stanfoca Casagrande, M. F., & Aldana Arcila, E. J. (2022). Gamma-ray spectrometry applied in the identification of potential acid mine drainage generation zones in waste rock pile with uranium ore and associated sulfides (caldas, Brazil). Geofísica Internacional, 61(3), 251-266. doi: https://doi.org/10.22201/igeof.00167169p.2022.61.3.2207 DOI: https://doi.org/10.22201/igeof.00167169p.2022.61.3.2207

Gomes de Oliveira, V. M., Tavares Ribeiro, L. F., & Rosalino da Silva, M. C. (2014). Hydrogeologic characterization of the abandoned mining site of Castelejo, Portugal by VLF-EM & RMT-R geophysical surveying. Geofísica Internacional, 53(2), 135-151. doi: https://doi.org/10.1016/S0016-7169(14)71496-5 DOI: https://doi.org/10.1016/S0016-7169(14)71496-5

Hamdan H, Andronikidis N, Kritikakis G, Economou N, Agioutantis Z, Schilizzi P, Steiakakis C, Papageorgiou C, Tsourlos P, Vargemezis G, Vafidis A. (2014). Contribution of electrical tomography methods in geotechnical investigations at Mavropigi lignite open pit mine, northern Greece. Environmental Earth Sciences, 72(5),1589-1598. doi: https://doi.org/10.1007/s12665-014-3063-6 DOI: https://doi.org/10.1007/s12665-014-3063-6

Hartwig, M. E. and Moreira, C. A. (2021). Integration of multisources data for quarry slope stability assessment in the Itaoca district (Southeastern Brazil). Anais da Academia Brasileira de Ciências, 93(1), e20190322. doi: https://doi.org/10.1590/0001-3765202120190322 DOI: https://doi.org/10.1590/0001-3765202120190322

Holmes, D. C.; Pitty, A. E.; Noy, D. J. (1992). Geomorphological and hydrogeological features of the Poços de Caldas caldera analogue study sites. Journal of Geochemical Exploration, 45(1-3), 215-247. doi: https://doi.org/10.1016/0375-6742(92)90126-S DOI: https://doi.org/10.1016/0375-6742(92)90126-S

International Society for Rock Mechanics, ISRM. (1978). Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics, Mining Sciences & Geomechanics. Abstracts, 15(6), 319-368. DOI: https://doi.org/10.1016/0148-9062(78)91472-9

Jerram, D. & Petford, N. (2012). The Field Description of Igneous Rocks (2a ed.). Environmental & Engineering Geoscience. DOI: https://doi.org/10.2113/gseegeosci.18.4.399

Kliche, C.A. (1999). Rock Slope Stability. Society for Mining, Metallurgy, and Exploration, Inc., Littleton.

Kolapo P, Oniyide G.O, Said K.O, Lawal A.I, Onifade M, Munemo P. (2022). An Overview of Slope Failure in Mining Operations. Mining, 2(2), 350-384. doi: https://doi.org/10.3390/mining2020019 DOI: https://doi.org/10.3390/mining2020019

Liu, X., Zhang, X., Kong, L., Wang, G., & Lu, J. (2022). Disintegration of granite residual soils with varying degrees of weathering. Engineering Geology, 305, 106723. doi: https://doi.org/10.1016/j.enggeo.2022.106723 DOI: https://doi.org/10.1016/j.enggeo.2022.106723

Marques, E.A.G., Barroso, E. V., Menezes Filho, A.P., Vargas, E. do A. (2010). Weathering zones on metamorphic rocks from Rio de Janeiro-Physical, mineralogical and geomechanical characterization. Engineering Geology, 111(1-4), 1-18. doi: https://doi.org/10.1016/j.enggeo.2009.11.001 DOI: https://doi.org/10.1016/j.enggeo.2009.11.001

Martins, A. C., Elis, V., Tomi, G. D., Bettencourt, J., & Marin, T. (2016). Resistivity and induced polarization to support morphological modeling in limestone mining. Geofísica internacional, 55(4), 227-238. doi: https://doi.org/10.22201/igeof.00167169p.2016.55.4.1725 DOI: https://doi.org/10.22201/igeof.00167169p.2016.55.4.1725

Menezes, D. A., Carneiro, S. R. C., Meireles, B. P. (2019). Map of the potential geotechnical susceptibility for operational pit slopes. REM-International Engineering Journal, 72(1). doi: https://doi.org/10.1590/0370-44672018720137 DOI: https://doi.org/10.1590/0370-44672018720137

Moreira, C. A., & Innocenti Helene, L. P. (2022). Identification for a favorable area of groundwater exploitation based on structural and geoelectrical data in fractured aquifer in Southern Brazil. Geofísica internacional, 61(4), 287-300. doi: https://doi.org/10.22201/igeof.00167169p.2022.61.4.2045 DOI: https://doi.org/10.22201/igeof.00167169p.2022.61.4.2045

Moreira, C. A., Helene, L. P. I., Hartwig, M. E., Lourenço, R., do Nascimento, M. M. P. F., & Targa, D. A. (2021). Geophysical and Structural Survey in the Diagnosis of Leaks at a Fuel Station in a Uranium Mine in Decommissioning Phase (Poços de Caldas, Brazil). Pure and Applied Geophysics, 178(9), 3489-3504. doi: https://doi.org/10.1007/s00024-021-02828-6 DOI: https://doi.org/10.1007/s00024-021-02828-6

Moreira, C. A., Montenegro Lapola, M. & Carrara, A. (2016). Comparative analyzes among electrical resistivity tomography arrays in the characterization of flow structure in free aquifer. Geofísica Internacional, 55(2), 119–129. doi: https://doi.org/10.22201/igeof.00167169p.2016.55.2.1716 DOI: https://doi.org/10.22201/igeof.00167169p.2016.55.2.1716

Nascimento, M. M. P. F., Moreira, C. A., Duz, B. G., & da Silveira, A. J. T. (2022). Geophysical diagnosis of diversion channel infiltration in a uranium waste rock pile. Mine Water and the Environment, 41(3), 704-720. doi: https://doi.org/10.1007/s10230-022-00878-3 DOI: https://doi.org/10.1007/s10230-022-00878-3

Oliveira, A. F., da Rocha, P. L. F., Carelli, S. C., & Plastino, R. H. (2010). Geophysical investigations for modeling sand ridges at Sepetiba bay, Itaguaí estado do Rio de Janeiro, Brazil. Anuário do Instituto de Geociências, 33(1), 44-53. doi: https://doi.org/10.11137/2010_1_44-53 DOI: https://doi.org/10.11137/2010_1_44-53

Pádua, A. I. D., & Campos, J. E. G. (2020). Estimative of groundwater circulation in fractured aquifers with resistivity and optical borehole logging: case study in Petrolina, PE (Brazil). Anuario do Instituto de Geociencias (On), 43(2), 138-150. DOI: https://doi.org/10.11137/2020_1_138_150

Palacky, G. (1987). Resistivity Characteristics of Geological Targets. En A. Nabighian.(Ed.), Electromagnetic Methods in Applied Geophysics-Theory. (pp. 53-129). Society of Exploration Geophysicists Tulsa, Oklahoma. DOI: https://doi.org/10.1190/1.9781560802631.ch3

Perrone, A.; Vassallo, R.; Lapenna, V.; Di Maio, C. (2008). Pore water pressures and slope stability: a joint geophysical and geotechnical analysis. Journal of Geophysics and Engineering, 5(3), 323-337. doi: https://doi.org/10.1088/1742-2132/5/3/008 DOI: https://doi.org/10.1088/1742-2132/5/3/008

Porsani, J. L., Elis, V. R., & Hiodo, F. Y. (2005). Geophysical investigations for the characterization of fractured rock aquifers in Itu, SE Brazil. Journal of applied geophysics, 57(2), 119-128. doi: https://doi.org/10.1016/j.jappgeo.2004.10.005 DOI: https://doi.org/10.1016/j.jappgeo.2004.10.005

Porto Jr, R., Pires, B. P., Gouveia, G. R., Brandão, V. S., & Coutinho, N. M. (2012). Geological and geotechnical characterization of mass movement occurred between the beaches of Prainha and Grumari, in the city of Rio de Janeiro, RJ. Anuário do Instituto de Geociências, 35(2), 5-13. doi: https://doi.org/10.11137/2012_2_05_13 DOI: https://doi.org/10.11137/2012_2_05_13

Priest, S. D., and J. A. Hudson. (1981). Estimation of discontinuity spacing and trace length using scanline surveys. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(3), 183-197. doi: https://doi.org/10.1016/0148-9062(81)90973-6 DOI: https://doi.org/10.1016/0148-9062(81)90973-6

Read, J., and Stacey, P.F. (2009). Guidelines for Open Pit Design, CSIRO Publishing. DOI: https://doi.org/10.1071/9780643101104

Singhal B.B.S., Gupta R.P. (2010). Applied hydrogeology of fractured rocks. Springer Dordrecht. doi: https://doi.org/10.1007/978-90-481-8799-7 DOI: https://doi.org/10.1007/978-90-481-8799-7

Souza, A.M.; Silveira, C.S.; Pereira, R.M. (2013). Contribuições dos metais provenientes das pilhas de rejeito da Mina Osamu Utsumi a drenagens do Complexo Alcalino de Poços de Caldas, Minas Gerais. Geochimica Brasiliensis, 27(1), 63-76. DOI: https://doi.org/10.5327/Z0102-9800201300010006

Sun, M.; Yu, J.; Wu, X.; Ding, Y.; Fu, T.; Yang, Y.; Jiang, J. (2021). Mechanical Behavior of Weathered Granite Exposed to Water. Applied Science, 11(21). doi: https://doi.org/ 10.3390/app112110356 DOI: https://doi.org/10.3390/app112110356

Telford W.M., Geldart L.P., Sheriff R.E. (2004). Applied Geophysics. Cambridge University Press

Ulbrich, H.H.; Ulbrich, M.N.C. (2000) The lujavrite and khibinite bodies of the Poços de Caldas Massif, southeastern Brazil: a structural and petrographical study. Revista Brasileira de Geociências, 30(4), 615-622. DOI: https://doi.org/10.25249/0375-7536.2000304615622

Whiteley JS, Watlet A, Uhlemann S, Wilkinson P, Boyd JP, Jordan C, Kendall JM, Chambers JE. (2021). Rapid characterisation of landslide heterogeneity using unsupervised classification of electrical resistivity and seismic refraction surveys. Engineering Geology, 290, 1-15. doi: https://doi.org/10.1016/j.enggeo.2021.106189 DOI: https://doi.org/10.1016/j.enggeo.2021.106189

Wyllie DC and Mah CW. (2004). Rock slope engineering: civil and mining. CRC Press. doi: https://doi.org/10.1201/9781315274980 DOI: https://doi.org/10.1201/9781315274980

Yan, Y.; Yan, Y.; Zhao, G.; Zhou, Y.; Wang, Z. (2022). Combined ERT and GPR Data for Subsurface Characterization of Weathered Hilly Slope: A Case Study in Zhejiang Province, Southeast China. Sustainability, 14(13), 7616. doi: https://doi.org/10.3390/su14137616 DOI: https://doi.org/10.3390/su14137616

Most read articles by the same author(s)

1 2 > >>