Aplicación de la aproximación circular en la estimación de estructuras sísmicas bidimensionales

Main Article Content

C. V. Traslosheros
J. Frez
J. A. Madrid
C. Rebollar

Abstract

The computational procedure reported here estimates seismic wave velocities for two-dimensional heterogeneous media from observations of body-wave travel times. The solution of the forward problem is based on the circular approximation. The structure is discretized in a grid of triangular cells and the velocity gradient is held constant within each triangle. In order to estimate the velocity field, a linearized sheme is applied using a Taylor series expansion around an initial solution. The partial derivatives of the travel times with respect to the model parameters are computed from closed form expressions. The initial model does not necessarily has to be laterally heterogeneous. A double stabilization of the least-squares solution of the inverse problem follows from the application of both, the singular-value decomposition and a simple regularization scheme. The results of several numerical experiments validate the computational procedure. In these experiments, we have modeled a real situation where travel time observations are used from 15 explosions and 12 sensors located at the perimeter of a square (with sides 30 m long) to detect low-velocity regions at maximum depths of 10 to 20 m. The solutions are illustrated with maps of velocity isolines and are evaluated taking into account the smoothness of the solution, the behaviour of the residuals and the resolution matrix, as well as our prior information about the physics of the problem. The procedure is more efficient than those using rectangular homogeneous cells.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
2%
33%
Days to publication 
11618
145

Indexed in

Editor & editorial board
profiles
Academic society 
Geofísica Internacional

PFL

1 2 3 4 5
Not useful Very useful

Article Details

How to Cite
Traslosheros, C. V., Frez, J., Madrid, J. A., & Rebollar, C. (1990). Aplicación de la aproximación circular en la estimación de estructuras sísmicas bidimensionales. Geofisica Internacional, 29(4), 211–236. https://doi.org/10.22201/igeof.00167169p.1990.29.4.632
Section
Article

References

AKI, K., 1977. Three dimensional seismic velocity anomalies in the lithosphere. J. Geophys., 43, 235-242.

ARANDA, R., M. BENHUMEA y A. VAZQUEZ, 1985. Estudio geofísico de exploración cárstica en las áreas de ampliación de la C. T. Mérida II. Informe Técnico Comisión Federal de Electricidad. 30 pp.

ARIC, K., R. GUTDEUTCH and A. SOILER, 1980. Computation of travel times and rays in a medium of two-dimensional velocity distribution. Pageoph., 118, 796-805. DOI: https://doi.org/10.1007/BF01593031

BISHOP, I. and P. STYLES, 1990. Seismic tomographic imaging of a buried concrete target. Geophysical Prospecting, 38, 169-188. DOI: https://doi.org/10.1111/j.1365-2478.1990.tb01841.x

BREGMAN, N. D., R. C. BAILEY and C. H. CHAPMAN, 1989. Crosshole seismic tomography. Geophysics, 54, 200-216. DOI: https://doi.org/10.1190/1.1442644

CERVENY, V., I. A. MOLOTKOV, and I. PSENCIK, 1977. Ray Method in Seismology. University Karlova, Praga, 214 pp.

CERVENY, V., 1985. The application of ray tracing to the numerical modeling of seismic wave fields in complex structures. In: Handbook of Geophysical Exploration, Section I: Seismic Exploration. Edited by K. Helbing and S. Treitel. Vol. 15A: Seismic Shear Waves, Part A: Theory. Edited by G. Dohr. Geophysical Press London, 1-24.

DINES, K. A. and R. J. LYTLE, 1979. Computerized geophysical tomography. Proc. Inst. Electr. Electron. Eng., 67, 1065-1073. DOI: https://doi.org/10.1109/PROC.1979.11390

FREZ, J., 1986. Teoría de Inversión. Apuntes de Clases, CICESE, Ensenada, México, 120 pp.

GEBRANDE, H., 1976. A seismic-ray tracing method for two-dimensional inhomogeneous media. In: Explosion Seismology in Central Europe; Data and results. Edited by P. Giese and C. Prodehls Skin. Springer-Verlag, Berlin, 162-167. DOI: https://doi.org/10.1007/978-3-642-66403-8_23

IVANSSON, S., 1985. A study of methods for tomographic velocity estimation in the presence of low-velocity zones. Geophysics. 50, 969-988. DOI: https://doi.org/10.1190/1.1441975

MADRID, J. A. Y J. C. V. TRASLOSHEROS, 1983. Un modelo sísmico preliminar heterogéneo del campo geotérmico de Cerro Prieto, Baja California Norte. Geofísica Internacional, 22, 4, 389-417. DOI: https://doi.org/10.22201/igeof.00167169p.1983.22.4.863

MADRID, J. A., 1986. New formulae for linear travel-time inversion in 2-D heterogeneous media. Theory and results. Geofísica Internacional, 25, 3, 361-382. DOI: https://doi.org/10.22201/igeof.00167169p.1986.25.3.1222

MADRID, J. A., 1989. A simple linearized method for inversion of travel time data in two-dimensional heterogeneous media. In: Digital Seismology and Fine Modeling of the Lithosphere. Edited by: R. Cassinis, G. Nolet and G. F. Panza. PLENUM, New York & London, 383-397. DOI: https://doi.org/10.1007/978-1-4899-6759-6_17

MARKS, L. W. and F. HRON, 1978. Ray tracing for complex structured media, Workshop Meeting on Seismic Waves in Lateral Inohomogeneous Media. Liblice, Praga. 20 pp.

McMECHAN, G. A. J. M. HARRIS and L. M. ANDERSON, 1987. Cross-hole tomography for strongly variable media with applications to scale model data. Bull. Seis. Soc. Am., 77, 1945-1960.

NEUMANN, G., 1981. Determination of lateral inhomogeneities in reflection seismics by inversion of travel-time residuals. Geophys. Prosp., 29,161-177. DOI: https://doi.org/10.1111/j.1365-2478.1981.tb00399.x

WILKINSON, J. H. and D. C. REINSCH, 1971. Handbook for Automatic Computation. Springer Verlag, New York, Heidelberg, Berlín, 440 pp.

Most read articles by the same author(s)